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ABSTRACT

In this thesis a model that can be used for conventional software reliability analysis and
prediction is described. The proposed model has been applied on a large-scale distributed
commercial software system which is already operational. The model is characterized by
the gamma distribution having three unknown parameters. The parameters are estimated
from failure time data by using the method of maximum likelihood estimation. The
model is shown to fit the data better than other well-known models in the absence of

additional information on the software system being analyzed.



OZET

Bu tezde geleneksel yazilim giivenilirligi ¢oziimlemesi ve dnkestiriminde
kullanilabilecek bir model anlatilmaktadir. Onerilen model isletimsel durumda olan
biiytik 6l¢ekli dagitimli ticari bir yazilim sistemi iizerinde uygulanmistir. Model ii¢
bilinmeyen parametresi olan gama dagilimi ile tanimlanmaktadir. Bu parametreler
basarisizlik zaman verilerinden en ¢ok olabilirlik kestirimi yontemi kullanilarak
kestirilmektedir. Modelin, ¢dziimlenmekte olan yazilim sistemi {izerine daha fazla bilgi

yoklugunda, diger bilinen modellerden verilere daha iyi uydugu gosterilmektedir.
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I. INTRODUCTION

As computer applications became more diverse and spread through almost every area of
everyday life, reliability became a very important characteristic of computer systems.
From the first time computers were used until presently, people have been interested in

reliable systems.

Since it is a matter of economy to produce a system having reliability above a
specific level, it is necessary to measure and control its reliability or unreliability. To do
this, a number of models have been and are being developed. New models try to make
better predictions and to alleviate the problems resulting from unreasonable assumptions

made by earlier ones.

Reliability modeling of a computer system may be considered in two aspects:
hardware and software. Although the nature of hardware and software faults resulting in
failures is quite different, both may be thought of as occurring randomly. For this reason,
variations of hardware reliability models were initially used for software reliability

prediction. Currently, models are also being developed specially for software.

In this thesis the reliability of a large operational commercial software system is
modeled. In particular, the future failure behavior of this software system is predicted by
studying and modeling its past failure behavior assuming that the same behavior will
continue. This can be done if the values of model parameters do not change during the
period of prediction. Some other metrics, such as the number of faults that were initially
present in the software or eventually to be detected, the reliability for a specific time
period, the failure intensity, etc., are easily determined from the results obtained. In this
study a number of software reliability models are selected. The parameters of the
functions described by these models are separately estimated so as the function of each
model fits well to the actual data. Then, chosing the model that has obtained the best fit,
in other words the one that is able to explain the current and past failure behavior most

adequately, the study is pursued further.

In the remaining of the thesis following this introduction, there are six more parts.

In the next three a background is provided for the remaining three.
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Part I discusses software quality and reliability and gives an overview of

hardware and software reliability related concepts.
Part III gives an overview of the most important software reliability models.

Part IV discusses parameter estimation and in particular the maximum likelihood

and least squares methods used for fitting a function to actual data.

Part V contains a rather abstract overview of the system being studied. It
discusses failure data collection procedures used for this system and explains the data

used to conduct this study.

Part VI discusses a few models that can be used to explain the past failure
behavior of this software and predict its future behavior. The most appropriate model is
chosen for further study.

Part VII gives some concluding remarks on the results obtained and discusses

some problems in software reliability modeling.

Appendix A contains two procedures that can be used to estimate parameters for a
model. Also a program is given which may be applied directly on failure data collected

from a software project.
Appendix B gives an index of some important concepts used in this thesis.

Bibliography gives a list of references used in this study and cited in the text of

the thesis. References not cited, but used in this study, are listed separately.
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II. SOFTWARE QUALITY AND RELIABILITY

The most important software product characteristics are level of quality, time of delivery
(or, generally, schedule), and cost. These attributes are user-oriented rather than
developer-oriented. Also, time of delivery and cost are quantitative, whereas quality

obviously cannot be defined quantitatively [1].

As Sommerville [2, p. 296] quotes from Boehm et al. [3], some software quality

criteria are:

Economy Correctness Resilience
Integrity Reliability Usability
Documentation Modifiability Clarity
Understandability Validity Maintainability
Flexibility Generality Portability
Inter-operability Testability Efficiency
Modularity Re-usability

Although it has been argued that most of them are difficult to quantify, some attempts to
do this have been made. The reader is referred to Mohanty [4] for software quality

assessment and to Boehm [5,6] and Mohanty [7] for software cost estimation.

Reliability is one, and probably the most important, aspect of software quality.
But before discussing software reliability in particular it is a good idea to talk about

reliability in general.

The reliability of any system depends on the correctness of the system design, the
correctness of the mapping of the system design to implementation, and the reliability of
components making up the system [2]. Since computer systems consist of two parts,

hardware and software, it is better to study their reliability separately.

Until the late sixties the major concern in computer systems was on their
hardware related performance. The main reasons were that hardware was more expensive

than software and less reliable than today’s hardware, and software systems were not so
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complex. After the early seventies, software costs started to increase while hardware
became cheaper and more reliable. For this reason much interest developed in software

reliability estimation.

Software systems are quite different than other systems, e.g., hardware. Since
they do not contain any moving parts, there is no such thing as wearout in software and
there is not any random factor in the output produced. If a routine gives a wrong answer,

there is no point in trying to execute it again with the same inputs.

For this reason the same models used for measuring hardware reliability cannot
be used for software. Goel [8] notes that hardware exhibits mixtures of decreasing and
increasing failure rates. The former is caused from fixing design related hardware
failures, while the later is primarily due to hardware component wearout or aging. On the
other hand, software exhibits only a decreasing failure rate (assuming that “debugging” a
software system does not cause its bug content to increase and there are no changes in the
user and computing environment so that the software becomes obsolete). It should always
be remembered that software should be considered with its environment; different
software reliability measure values for the same software in different environments may
be assessed. This is the reason why program testing is considered sometimes more
advantageous than program proving for determining the reliability of a program. Program
testing gives information about a program’s actual behavior in its intended environment,
while program proving is limited to conclusions about the program’s behavior in a

postulated environment which is assumed to be correct.

The purpose for which the measured software reliability can be used is important.
It may be used for planning and controlling resources during development, so that a high
quality software may be developed. It also gives the user a confidence about the
correctness of software. It should be observed that as more faults are uncovered, it
becomes more difficult to expose additional faults. So after the reliability, or quality, of
software increases above a certain point the software developer may stop the

development process.

Software reliability measures can be used in at least four areas: (a) system
engineering; (b) project management during development and particularly test;
(c) operational phase software management; and (d) evaluation of software engineering

technologies [1].
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2.1. Hardware Reliability

Although software reliability is quite different than hardware reliability, it is necessary to
review some hardware reliability evaluation concepts before going into software
reliability. The reliability of a system is defined as the probability that it will adequately
perform its intended function—without failure—for a specified interval of time under
stated environmental conditions, which may be defined as the user requirements [1].
Roughly it can be said that, reliability is inversely proportional to the rate at which

failures occur [9].

In this section a number of terms related to reliability, such as reliability function,
expected life, hazard rate, and failure rate, will be defined and one important reliability
function will be mentioned. These concepts apply to software and hardware reliability in

general.

If T is a random variable representing the failure time of a system, then the

probability that the system will fail by time ¢, i.e., the failure probability, is

t
F(t)= PIT<d]= [ fix) dx. 2.1)
0

Here, f(¢) represents the probability (or failure) density function and F(¢) the cumulative

distribution function.

The reliability function, i.e., the probability that the system survives until time ¢,

1s defined as

R(=P[T>f]=1-F() = J fx) dx. (2.2)
t

In other words, R(#) represents the probability that the system will not have failed by time
t assuming it is fault-free at time 0.

The expected life, or mean time to failure (MTTF)—also denoted by ©—is simply

the mean or the expected value of the failure density function:
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E[T)= J LAY dt. (2.3)
0
It can be shown also that
E[T)= J R(?) dt. (2.4)
0

Mean time to repair (MTTR) is the time during which repair or replacement is
occurring. Mean time between failures (MTBF) is the sum of MTTF and MTTR.

The failure rate is the probability that a failure per unit time occurs in an interval

such as [7;, #,], knowing that a failure has not occurred before #;:

P[I1ST<t2|T>t1] _ P[I1ST<t2] _ F(tz)_F(tl)
h~—t (-t PIT>1] (-t Ry

(2.5)

The hazard rate, on the other hand, is defined as the limit of the failure rate as the

interval approaches to zero:

lim FutA)-FO A1)
=m0 nRG Ry

(2.6)

So, there is a difference between the hazard rate and failure rate; the hazard rate is
an instantaneous rate of failure at time ¢ for a system of age . The hazard rate changes
over the life cycle of a physical system, typically it decreases, remains constant, and then

increases with time giving a “bathtub curve.”

As an example of a well-known reliability function the exponential distribution

can be given:

ft) = Aexp(-Ar), A>0,

F(f) = 1 —exp(-At),

R(1) = exp(-A0),

z(t) = A, constant hazard rate,
E[TI=1/A. 2.7

Among other important distributions the Weibull and gamma distributions can be

mentioned.
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2.2. Software Reliability

Software reliability represents a user- (or customer-) oriented view of software quality. It
relates directly to operation rather than design of the program, and hence it is dynamic
rather that static. For this reason software reliability is interested in failures occurring and
not faults in a program. Reliability measures are much more useful than fault measures.

Software reliability may be expected to vary during the software development period.

It becomes apparent that the distinction between the terms “failure” and “fault” is

an important one.

Failure means a function of the software that does not meet user requirements [1].
It is an external behavior of the system deviating from that required by its specifications.
In other words, failure is something dynamic, i.e., occurring at execution time. It is not a
bug or fault. It is more general. For example, excessive response time may be considered

as a failure if it does not meet the specifications.

On the other hand, a fault, or bug, is a defect in a program, that when executed
under particular conditions will result in a failure. A fault can be a source of more than

one failure. By definition, there cannot be multiple faults causing a single failure.

A fault may result from an error made by the programmer. Errors occur because
of (a) incomplete communication between the people involved in a project or between
different times for the same person; (b) defective knowledge of the application area, the
design methodology, and the programming language; (c) incomplete analysis of the
possible conditions that can occur at a given point in the program; and (d) transcription

CITOIS.

The probability, or relative frequency of times, that a given program will work as
intended by the user, i.e., without failures, in a specified environment and for a specified
duration can be termed as software reliability. The aim of a software engineer is to
increase this probability and make it one if possible. To do this he or she must measure
the reliability of the software. A commonly used approach for measuring software
reliability is by using an analytical model whose parameters are generally estimated from

available data on software failures. Part III of this thesis discusses such models.

Reliability quantities have usually been defined with respect to time, although it is

possible to define them with respect to other variables. Time may be considered in three
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different ways [1]:

(A) Execution time (7), i.e., CPU time;
(B) Calendar time (¢); and
(C) Clock time, i.e., the sum of times passed from program start to program end, without

counting shut-down periods.
Execution time is considered superior [10].

There are 4 general ways of characterizing failure occurrences in time:

(A) Time of failure

L ) ) Htime-based
(B) Time interval between failures (incremental) U

(C) Cumulative failures experienced up to a given time

. . o Hfailure-based
(D) Failures experienced in a time interval U

All these four quantities are in fact random variables, because, (a) the locations
of faults within a program are unknown; and (b) the conditions of program execution are
generally unpredictable. Of course, this does not mean that they are completely

unpredictable.

A random process is a set of random variables, each corresponding to a point in
time. In reliability study there are two characteristics of a random process: (a) the
probability distribution of the random variables, e.g., Poisson; and (b) the variation of the
process with time. A random process whose probability distribution varies with time is

called nonhomogeneous.

Two functions can be defined for the time variation of a random process: (a) the
mean value function, U, as the average cumulative failures associated with each time
point; and (b) the failure intensity function, A, as the rate of change of mean value
function or the number of failures per unit time. Note that the failure intensity function is

the derivative of the mean value function.

When there are no changes in the software, i.e., no debugging and software
corrections take place, then A is constant and a homogeneous random process takes
place. On the contrary, when software corrections occur a nonhomogeneous process as
described above takes place. Figure 2.1 illustrates the mean value and related failure
intensity functions of such a process. These graphs are very typical in the sense that the
mean number of failures experienced increases with time in such a manner that the

failure intensity decreases.
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mean failures
failure intensity
(failures/time)

time time
FIGURE 2.1 Typical plots of mean value and failure intensity functions with
respect to time

This behavior is affected by two factors: (a) the number of faults in the software;

and (b) the execution environment.

Let M(t) be a random process representing the number of failures experienced by

time ¢. Then the mean value function is defined as
H(t) = E[M(1)], (2.8)

i.e., the expected number of failures at time z. The failure intensity function of the M(¢)
process is the instantaneous rate of change of the expected number of failures with
respect to time, or

d
A(®) =Z—Et). (2.9)

The “time” used here may be any one of the above-mentioned three times, but

execution time is generally preferred in order to be compatible with hardware reliability.

Principal factors affecting software reliability are fault introduction, fault
removal, and environment [1]. Fault introduction depends on the characteristics of the
code developed, i.e., created or modified—such as its size—and of the development
process—such as software engineering technology and tools used and level of experience
of programmers. Fault removal depends on time, operational profile, and the quality of
repair activity. Environment is determined by the operational profile, which is the set of
run types that a program can execute along with the probabilities with which they will
occur. It is generally established by enumerating the possible input states and their

probabilities of occurrence or by specifying the sequence of program modules executed.
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As faults are removed, as in test phase, failure intensity tends to decrease and
reliability to increase. When faults are introduced during operation or test, as in cases
when new features or design changes are being introduced into the system or when faults
predominate repairs during debugging, there tends to be a step increase in failure
intensity and a step decrease in reliability. If a system is stable, as in a program that has
been released and there are no changes in code, both failure intensity and reliability tend

to be constant.

The term mean time to failure (MTTF), which means the average value of next
failure interval, is not used so extensively in software reliability as in hardware
reliability, since in many cases it is undefined. Instead, failure intensity, which is roughly

the inverse of MTTF, is preferred.

Software availability is the expected fraction of time during which a software
component or system is functioning acceptably. For a constant failure intensity, it is the
ratio of up time to the sum of up time and down time, as the interval over which the
measurement is made approaches infinity. The down time is the product of the failure
intensity and the mean time to repair (MTTR). MTTR for software is defined as the
average time required to restore the database for a program, reload the program, and
resume execution. It does not include the time spent during fault determination and
correction, since it is generally not practical to hold up operation of software during this

period.

Maintainability for software relates to the speed and ease with which a program
can be corrected. Since repairs to software are not generally performed in a way that idles

the program, maintainability does not relate to down time, as it does for hardware.
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III. SOFTWARE RELIABILITY MODELING

Littlewood [11] discusses the difficulties that may be encountered in software reliability
modeling. In particular, early software reliability models are criticized because they are
based on assumptions made for hardware related models. It is suggested that metrics such
as MTTF or MTBF must be used with care. This is because they may not exist. One may
always obtain a finite average of some data, but this may not always estimate a
population mean. For example, if at some point in time one becomes sure that a program
is perfect—although it is difficult to be in such a position—then MTTF does not exist—it

is infinite—for this program. Better measures such as failure rates are more appropriate.

One should not be concerned too much with the number of bugs, i.e., faults, in a
program, but with their effect on its operation. In other words, the operational reliability
of a program is more important than the quality of its state. Littlewood also points out
that a relationship between the state of program and its performance is likely to be very
complicated and unknown. For this reason, models should be based upon operational
reliability. He also says that structural models appropriate to software should be used and
a Bayesian approach should be preferred, because of the uncertainties present in the
inputs selected from the input space of the program and in the program itself which came
into existence during program development and debugging. The first uncertainty can be
described by a Poisson process with failure rate A. The second uncertainty makes this

parameter a random variable.

The approach defended by Littlewood (Littlewood-Verrall model [12, 13]) is to
improve faith in a program, or equivalently decrease its hazard rate, while no failures
occur. But once a failure is encountered faith drops immediately, only to raise back
below or (hopefully) above its previous level after the program is debugged. In this
respect this model is considered superior to models such as of Jelinski and Moranda [14]
where the hazard rate changes only at each fault correction, but it is constant between

corrections.

Finally, Littlewood advises us not to stop at a reliability analysis, but pursue the

model further to evaluate the life-time utility of programs.
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In this part some important models are reviewed. A classification of these models

made by Musa et al. [1] is also given.

Most software reliability models are formulated in terms of random processes.
Models consider the probability of failure times or failures experienced and the nature of
the variation of the random process with time. So, most models are time-based.
Specification of a model generally includes specification of a function of time, such as

the mean value or failure intensity function.

The values of the parameters for the specific form of a model are established

through either:

(A) Prediction: Determination from physical properties of the software product and the
development process. This can be done before any execution of the program.
(B) Estimation: Statistical inference procedures are applied to failure data taken for the

program. This can be done after the program has executed long enough.

Models are not exact and do not totally represent reality. Also in the
determination of the parameters of a model some uncertainties are always introduced. For
these reasons parameter values should be expressed together with confidence intervals,
representing the range of values within which a parameter is expected to lie with a certain

confidence.

A good software reliability model (a) gives good predictions of future failure
behavior; (b) is capable of estimating and computing useful quantities; (c) is simple;
(d) is widely applicable across different software products; and (e) is based on sound
assumptions. It can be used (a)to evaluate software engineering technology
quantitatively; (b) to evaluate the development status during the test phases of a project;
(c) to monitor the operational performance of software and to control new features added
and design changes; and (d) to enrich insight into the software product and the software

development process [1].

Most models are based on a stable program executing in a constant environment.
In other words, the code of the program and the operational profile is not changing. Only
fault removal may take place. Some models also allow small amount of fault introduction

too. This is generally the case for a program that has been released and is operational.

To predict the future failure behavior, the values of model parameters should not
change for the period of prediction. If this is not the case, one should either wait until

enough failures have occurred—so that model parameters can be re-estimated—or
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compensate for the change. Incorporating changes into a model is generally impractical

because of the added complexity.

3.1. Reliability Models

Goel and Bastani [15] define two main categories of reliability estimation models:
software reliability growth models and statistical models. The models in the first class
estimate the reliability using the error history of the program, whereas the others use the
response (success/failure) of a program to a random sample of test cases without making

any corrections on the errors discovered.

The models, based mainly on the failure history of software, can be classified

according to the nature of the failure process studied as follows [8]:

(A) Times Between Failures Models. Generally, it is assumed that the time between
(i-1)st and ith failures follows a distribution with parameters depending on the number of
faults remaining in the program during this interval and it is expected that these intervals
will get longer as faults are removed. Of course, this may not be true for each pair of
successive failure times, because failure times are random variables and observed values
are subject to statistical fluctuations. There are a number of models in this class ranging
from the simplest (Jelinski and Moranda de-eutrophication model [14]) to more complex
(Littlewood-Verrall Bayesian model [12, 13]) ones.

(B) Failure Count Models. For this class of models, instead of using the times between
failures, the interest is in the number of failures in specified time intervals and it is
expected that the observed number of failures per unit time—again a random

variable—will decrease as faults are removed.

(C) Fault Seeding and Input Domain Based Models. These are time-independent models.
In fault seeding models a number of faults is “seeded” in the program. The program is
then tested, failures resulting from the seeded and indigenous faults are recorded. Using
these data the total number of indigenous faults in the program is estimated. In input
domain based models the input domain of a program is partitioned into a set of

equivalence classes—each one usually associated with a program path—and the program
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is tested for each of the above input test cases. The reliability is determined from the

number of failures observed during execution of the sampled test cases.

Naturally each model in each class makes different assumptions and can be used
only in specific phases of software development. For example, in design phase none of
them may be used, in unit testing time-dependent models do not seem to be applicable, in
integration testing most of the existing software reliability models are applicable, in
acceptance testing failure count and input domain based models are generally applicable,

and in operational phase failure count models are likely to be most applicable.

3.2. Classification of Software Reliability Models

From the late sixties various models have been developed relating reliability to time,
failures experienced, or other variables (for example see Yu et al. [16]). The most

important improvements in this area were the following [1]:

(A) using execution time to simplify models;

(B) distinguishing between fault and failure;

(C) estimation methods for model parameters;

(D) development of comparison criteria to compare different models;

(E) classification of models;

(F) collecting better data;

(G) adapting models for particular circumstances of various applications; and

(H) using failure intensity instead of mean time to failure.

The models developed so far can be classified in terms of their attributes as
follows [1]:

(A) Time domain: Calendar or execution time.

(B) Category: Finite or infinite number of failures experienced in infinite time. For finite
failures category models there are a number of c/asses according to the functional form
of the failure intensity in terms of time. For infinite failures category there are a number
of families according to the functional form of the failure intensity in terms of the
expected number of failures expected.

(C) Type: Distribution of the number of failures experienced by time 7.
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TABLE 3.1

Classification of some software reliability models

Finite failure category

Poisson type

Binomial type

Other types

Exponential class

Musa *75 [17]
Moranda 75
Schneidewind 75
Goel-Okumoto *79 [18]

Jelinski-
Moranda 72 [14]

Shooman ’72

Goel-Okumoto ’78
Musa *79
Keiller-

Littlewood ’83 [19]

Weibull class Schick-Wolverton *73
Wagoner ’73
Class 1 Schick-Wolverton *78

Pareto class

Littlewood ’81

Gamma class

Yamada-Ohba-
Osaki ’83 [20]

Infinite failure category

Type 1 Type 2 Type 3 Poisson type
Geometric Moranda ’75 Musa-
family Okumoto ’84 [21]
Inverse linear Littlewood-
family Verrall 73 [12]
Inverse polyn. Littlewood-
(2nd degree) Verrall °73 [12]
family
Power family Crow ’74

Table 3.1 tabulates some well-known models. Note that time domain is not

considered in the table because the same models may be applied to either time domain.

However, models applied to execution time domain are more effective than calendar time

models, because execution time, or CPU time, is more closely linked to software’s

chance of failure. For example, a software-controlled telephone-switching system may

have 10hr execution time per day, while a specialized mathematical subroutine in

software library might run only a few minutes each day. Both have calendar time of 24hr,

but their execution times are quite different, and their failure rates will depend on their

execution times [22].
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Some important models, that are shown in the table, are discussed very briefly in
the following subsections [8, 1]. Note that most models are times between failures and

failure count models according to the classification made by Goel [8].

3.2.1. Jelinski-Moranda Model (1972)

This model [14] assumes u( independent software faults at the start of testing which are
equally likely to cause a failure during testing. A detected fault is removed with certainty
immediately without introducing new faults. In this case the hazard rate is piecewise

constant and proportional to number of faults remaining:

z(tilt;i-1) = duo—(=1)], 3.1

where ¢; is the time between the (i—1)st and ith failures, @ the proportionality constant
between the number of remaining faults and hazard rate (in other words the hazard rate
per fault), and u the total number of faults. The failure intensity can be shown to be
exponentially decaying in terms of time. Maximum likelihood estimation is used to
determine the parameters @ and u. Figure 3.1 gives an example plot of the hazard rate

versus cumulative time.

=
o
S

<+

hazard rate z

cumulative time t

FIGURE 3.1 A typical plot of program hazard rate for the Jelinski-Moranda model

3.2.2. Shooman Model (1972)

This model is essentially similar to the Jelinski-Moranda model.
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3.2.3. Schick-Wolverton Model (1973)

It makes the same assumptions as the Jelinski-Moranda model except that the hazard rate
is assumed to be proportional to the number of faults remaining as well as the time

elapsed since last failure:
2(tilti-1) = duo—(=D] #;. (3.2)

Figure 3.2 gives an example plot.

hazard rate z

L ;> cumulative time t
i

FIGURE 3.2 A typical plot of program hazard rate for the
Schick-Wolverton (1973) model

3.2.4. Schick-Wolverton Model (1978)

Later the Schick-Wolverton (1973) model was modified assuming a hazard rate which is

parabolic instead of a linear function in time:
2(t3lti-1) = @Lug=(i=D)] (=Bt + Bt + ). (33)

This indicates that the likelihood of a failure occurring increases rapidly as the test time

accumulates within a testing interval.

3.2.5. Schneidewind Model (1975)

In this model fault detections per time interval are viewed as a nonhomogeneous Poisson

process with an exponentially decaying intensity function:

A(D) = By exp(—Bqi), Bo.B1>0, i=1,2, ... (3.4)
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3.2.6. Moranda Model (1975)

There are two variations of the Jelinski-Moranda model to describe testing situations
where faults are not removed until the occurrence of a fatal one at which time the

accumulated group of faults is removed:

(A) Geometric de-eutrophication process. In this model the hazard rate decreases in steps

that form a geometric progression:
2(t}) = zg K. (3.5)

The parameter z is the fault detection rate during the first interval, / the testing interval,
and k a constant (0<k<1).

(B) Geometric Poisson. In this model too hazard rate decreases in geometric progression,

but at fixed intervals rather than at each failure correction.

3.2.7. Musa Model (1975)

In this model, also called “(basic) execution time model,” Musa [17] uses execution time
instead of calendar time. Fault correction rate is generally proportional to the fault

detection or hazard rate:

z(1) =f K [ay=N(D)], (3.6)

where T is the execution time, f the linear execution frequency, K the fault exposure
ratio—a proportionality constant which relates fault exposure frequency to the linear
execution frequency—ay) the total number of faults, and N(7) the number of faults
corrected during (0,7).

This model has a calendar component to relate execution time to calendar time
based on the fact that available resources limit the amount of execution time for each
calendar day. For example, the pace of execution during testing is affected usually by the
number of debuggers, number of test team members, and available computer time, in that

sequence.

The failure intensity is given by
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M=o} 41 (3.7)

where A is the initial failure intensity, V) the total number of failures that can occur in

infinite time, and [ the expected number of failures experienced at a given point in time

U =y ﬁ - expﬁc—g rﬁ (3.8)

which is obtained from

Combining (3.7) and (3.8)
A
A(T) = A exp%v Tﬁ 3.9
0

1s obtained.

3.2.8. Littlewood-Verrall Model (1973)

In this model [12, 13] a Bayesian approach is used. Software reliability is considered as a
measure of strength of belief that a program will operate successfully. The hazard rate is
treated as a random variable, varying discontinuously at each failure detection and

correction and continuously with the cumulative execution time.

3.2.9. Keiller-Littlewood Model (1983)

This model [19] is similar to the Littlewood-Verrall model, but uses a different parameter

of the distribution of the hazard rate to express reliability change.

3.2.10. Littlewood Model (1981)

This is another variant of the Littlewood-Verrall model.
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3.2.11. Goel-Okumoto Model (1978)

This model, which is a modification of the Jelinski-Moranda model, considers imperfect
debugging. The hazard rate during the interval between the (i-1)st and the ith failures is
given by

z(tilti-1) = @lug = p(i=D)], (3.10)

where @is the failure rate per fault and p the probability of imperfect debugging.

3.2.12. Goel-Okumoto Model (1979)

Considering failure detection as a nonhomogeneous Poisson process with an
exponentially decaying rate function, the expected number of failures observed by time ¢

is given by [18]
p() = Bo [1 = exp(=B1 1], (3.11)
and the failure rate by

A@) = W' (1) = By By exp(=P12), (3.12)

where f3, is the expected number of failures to be observed eventually and (3 the failure

detection rate per failure. Figure 3.3 gives typical plots of the mean value and failure
intensity functions with respect to time. Note that, when [3,3;>0 the basic execution time

model of Musa is obtained.

mean failures U(¢)
|

failure intensity A(7)
(failures/time)

time
FIGURE 3.3 Typical plots of mean value and failure intensity functions for the
Goel-Okumoto (1979) model




SOFTWARE RELIABILITY MODELING 21

In practice, it has been observed that the failure rate first increases and then
decreases. In order to model this situation Goel proposed a generalization of the above
model with an additional parameter 3,. That is,

H() = ﬁlﬁﬁz[l ~ exp(=B,72)], (3.13)

and

M) = (1) = BorP2 ™! exp(=,1P2), (3.14)

3.2.13. Yamada-Ohba-Osaki Models (1983)

This is a modification of the nonhomogeneous Poisson process to obtain an S-shaped
curve for the cumulative number of failures detected [20, 23, 24, 25]. It can be thought as
a generalized exponential model where failure rate initially increases and later
(exponentially) decays. Thus the mean value function is S-shaped. The software error
detection process described by such a growth curve can be regarded as a learning process
in which test-team members become familiar with test environment, so their test skills
gradually improve. There are two models describing mean value functions that can give
such a curve. Generally these models can be used in place of an exponential model to

avoid a pessimistic assessment.

(A) Delayed S-shaped Model [20]. This is a simple modification of the nonhomogeneous
Poisson process described in the previous subsection. A difference between this model
and the exponential models is that this model is designed for analysis of the fault
isolation data while the exponential software reliability growth models are designed to
describe the failure detection process. The mean value function—number of faults

isolated—is given by

p(1) = ay [1 = (1+@) exp(-@)], wy, >0 (3.15)

where @) is the number of inherent faults and @the constant per-fault hazard rate (at zero

time). The failure intensity function—fault isolation rate—is given by

A1) = ay @t exp(—q) (3.16)
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which means A(0)=A(c0)=0 and A(1/@)=Aax. In other words, the time to failure of an
individual fault follows a gamma distribution having as shape parameter two. The

expected number of faults remaining in the system is

w(t) = E[N(0)=N(#)] = ap(1+¢) exp(-¢@) (3.17)

and the reliability, i.e., the probability of no failures in (#;—;, #;—;+¢;] given that most

recent failure occurred at time #,_j, is given by
R(tlti-1) = exp[p(ti-)—p(t;-1 4], =1, 2, ... (3.18)
as usual.

(B) Inflection S-shaped Model [25]. In this model the underlying concept is that the
observed software reliability growth becomes S-shaped if faults in a program are
mutually dependent, i.e., some faults are not detectable before some other faults are
removed. This is characterized by the following inflection S-shaped growth mean value

function

1 —exp(-¢¥)
1+ Yexp(-q@)

M) = @y G, QY0 (3.19)
where @y is the number of faults to be eventually detected, @ the failure detection rate,
and ( the inflection factor defined as

1_
Wr) = 0<rsl (3.20)

where r, the inflection rate, represents the ratio of the number of detectable faults to the
total number of faults. When =1, that is all faults are detectable initially, then the
exponential model is obtained since (=0. Only if 7<0.5 (or (/>1) the reliability growth

curve has an inflection.

The failure intensity function for this model is

_ @y 9(1+Y) exp(-@)
[1+ @exp(-@)]*

A(f) (3.21)

and its maximum, which is also the inflection point for [, is obtained at
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_Ing
==, (3.22)

if g1,

3.2.14. Crow Model (1974)

This model, developed mainly for complex, repairable hardware systems during
development testing, is based on a nonhomogeneous Poisson process with failure
intensity and mean value functions being power functions of time. It is suggested that it

can be applied to software reliability with certain ranges of parameter values.

3.2.15. Musa-Okumoto Model (1984)

This rather simple model [21, 26] is a logarithmic Poisson execution time model based on
a nonhomogeneous Poisson process with an intensity function decreasing exponentially

with expected failures experienced

M) = Ag exp(=6u), (3.23)

where A\ represents the initial failure intensity and 6 the rate of reduction in the
normalized failure intensity per failure. This model incorporates the claim that the repair
of early failures reduces the failure intensity more than later ones. The expected number

of failures is a logarithmic function of (execution) time:

U(T) :leln(/\oer +1). (3.24)
Combining (3.23) and (3.24)
A
70
A(D) = AOr+ 1 (3.25)

is obtained for the relation between the failure intensity and time.
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3.3. Model Development

Developing a practical and useful model involves substantial theoretical work, tool
building, and practical experience, which means several person years. On the other hand,
the application of a well-established model requires a small fraction of project resources.
In this thesis the second approach is used, because of the time limitation and the

insufficient acquaintance with the system whose reliability is being modeled.

The various steps of the model fitting and decision making process are as follows

[8]:

Step 1—Study software failure data in order to gain an insight into the nature of
the process being modeled. For most models, such data should be in the form of either
times between failures (time-based) or as failure counts (failure-based). To determine the
appropriate variables for the model it may be a good idea to plot these as a function of,

say, calendar time.

Step 2—Choose an appropriate reliability model based on an understanding of the

process studied.

Step 3—Obtain estimates of model parameters using, for example, the method of

maximum likelihood, and based on the available data.

Step 4—Obtain the fitted model by substituting the estimated values of the

parameters in the chosen model.

Step 5—Conduct some suitable goodness-of-fit test to check the model fit. If the
model fits, then proceed with next step, otherwise collect additional data or seek a better,

more appropriate model.

Step 6—Compute various quantitative measures, like undetected (remaining)
errors, time to next failure, software reliability, etc., (together with confidence bounds),

to assess the performance of the software system.

Step 7—Use the developed model to make some decisions about the software

system.

In Part VI of this thesis a model is developed roughly following these steps.
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IV. PARAMETER ESTIMATION

After choosing a model, there remains the problem of determining its parameters to
obtain a specific form of the model. There are two methods: Parameter prediction and

parameter estimation.

Parameter prediction tries to establish the parameters of a model form the
properties of the software product and the development process. It has the advantage that
can be applied before the software is tested, that is before failure data are available. Its
disadvantages are that not every model parameter has an interpretation that allows easy
parameter prediction and that the accuracy of parameter prediction is limited. An
example model where parameter prediction can be used is the basic execution time model

which has the following mean value function:

1) =V ﬁ - eXp@%(()l rﬁ. (4.1)

Here, V), the total number of failures that would be experienced in infinite time, and A,

the initial failure intensity, can be predicted using the relations:
Vo = %1 4.2)

and

Ao =fK . (4.3)

B is the fault reduction factor, &y the number of inherent faults, f the linear execution
frequency of the program, and K the fault exposure ratio of the program [1]. This subject

is not pursued further here, because parameter prediction is not used in this thesis.

Parameter estimation is used in subsystem or system test or operational phase
where failure data are available. It is a statistical method trying to estimate model
parameters based on failure times or number of failures per time interval. Point

estimation is used to determine the parameters and interval estimation to compute
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confidence limits for the parameters that are useful in evaluating the accuracy of the

estimates.

In this part, two widely used parameter estimation methods, namely least squares

and maximum likelihood estimation, will be covered.

4.1. Least Squares Estimation

For small or medium size samples least squares estimators are considered to be better [1].

Two approaches may be considered:

(A) Estimate the model parameters by fitting the functional relationship of the failure

intensity (A) with respect to mean value function (), to the observed failure intensity (7).

(B) Estimate the model parameters by fitting the functional relationship of the failure

intensity with respect to time, to the observed failure intensity.

Assume that we have (cumulative) failure times ¢, i=1, ..., m,, in a time interval

(0,z.]. This observation interval is partitioned at every kth failure occurrence time so that

there are p (=m,/k) disjoint subintervals. The observed failure intensity, r;, for the /th

subinterval (fx(j-1), tkx;] 18 given by [26, 1]

k

57, =1, ..., p-1
kx1 ~ Ukx(1-1)

rp=
I:ﬁﬁe —k(p—1)
, I=p.
e = Ux(1-1)
The estimate of the mean value function for the /th subinterval is given by
m=k(-1), I=1,...,p.

Note that the midpoint is not used [26]. The time is calculated as

(4.4)

(4.5)
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X +1 x(]=1
E"LM_LL) =1, ...,p-1
2 ) 5 5
4= (4.6)
+ 17« 1 =
E 2

k is selected as 5 as a reasonable compromise between grouping a small number of
failures—that will result in large variations in the estimated failure intensity—and

grouping a large number of failures—that will result in too much smoothing.

The two approaches try to estimate model parameters by minimizing

V4
S =Y [Inr;=1In A(mB)> (4.7)
=1
or
V4
SB =S [nr-In B (4.8)
=1

respectively. Note that the difference of the logarithms of the observed failure intensity to
the estimated failure intensity is taken. This is equivalent to the minimization of the sum
of the squares of the relative errors, which is generally preferred since it gives the same

weight for any level of failure intensity.

It has been observed that using the functional relationship A(z,B), i.e., the second
approach, does not give better results than the first approach. In particular, the parameters

tend to be overestimated.
Examples:

(A) The exponential class models (Subsections 3.2.7 and 3.2.12) have the following

functions:
H() = By [1 = exp(=PB;1)] (4.9)
A = By (Bo=H) (4.10)
A(®) = By By exp(=B10). (4.11)

From (4.10) and (4.7)
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P
S(Bo B) = 3 [Inr;=In By = In(By=m))]? (4.12)
=1

is obtained. Minimizing this expression, results in the least squares estimates ﬁo and ﬁl
for the unknown parameters. This minimization can only be made by numerical methods

such as the one described in Appendix A.
Similarly from (4.11) and (4.8)
1 2
S(Bo» B) = Y [Inry=In(BoBy) + By] (4.13)
=1

1s obtained.

(B) The geometric family models (Subsection 3.2.15) have the following functions:

(7)) = Bo In(1+f31) (4.14)
_ H
X4 = o By expit 5 (4.15)
_ BB
M0 =13 g (4.16)
From (4.15) and (4.7)
p
m

S(Bos B1) = z @n rp=In(BoBy) +EOL§Z (4.17)

=1

is obtained which can be minimized using linear regression [26].

Similarly from (4.16) and (4.8)

p
S(Bo, B) = 3 [Inry = In(ByBy) + In(1+B 1)1 (4.18)
=1

is obtained.
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Interval Estimation: Assuming that the differences of the logarithms of the observed and
estimated failure intensity, i.e., (In 7, — In A;) are independent random variables with zero
mean and normally distributed with a common variance, confidence intervals for model
parameters can be calculated. These specify the range of values the model parameters

may assume given a specific measure of confidence.

4.2. Maximum Likelihood Estimation

Assume that the mean value function p(7) includes w+1 model parameters S (k=0, ...,

w). Suppose that the data set on m, failure occurrence times is observed. The likelihood
function for the w+1 unknown parameters in the nonhomogeneous Poisson process model
with u(¢) givent = (¢, ..., t,) is given by [24, 1]

me
L(B) = exp[-p(t,)] [] Ay (4.19)
i=1
The logarithm of the likelihood function yields
me
In L(B) = Z In A(t;)—u(z,). (4.20)
i=1

Then the maximum likelihood estimates ﬁk (k=0,...,w) can be obtained by solving the

likelihood equations:

%=0, k=0, ..., w. (4.21)
In other words,
< 1 aAG) 0
Z A(lti) 6;(32) B gg:) =0, k=0, ..., w. (4.22)

i=1
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From Equation (4.22) it can be deduced that, for most Poisson type models, the first

parameter is given by

_ Mme BO
ﬁO - u(te;ﬁooﬁlo' . "ﬁw). (423)

The other parameters must be determined by finding the roots of the Equation (4.22). If
the model has just two parameters, only ﬁl need to be determined and this can be done

using numerical methods. Such a procedure is explained in Appendix A.
Examples:

(A) For exponential class models using (4.9) and (4.23)

. m,
LI —n (29

is obtained. Using (4.22)

B~ exp(Bit,) — 1

t Me
et — 5 =) (4.25)
i=1

is obtained. Since in the last equation only ﬁl is unknown, using any numerical root
finding procedure its value can be determined. Then the value of ﬁo is obtained by
substituting £ in (4.24).

(B) Similarly for geometric family models

m
A= ma+Bi) (4.26)

and

me
1 t: m,t
— — e =0 4.27
Ez 1+~ (#Byto) In(1+B11,) (4-27)
i=1
are obtained.

Interval Estimation: When there is only one unknown parameter, [, then the maximum
likelihood estimator of f3; is asymptotically normally distributed with mean f3; and
variance 1//(3;), where
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0%In L
IB)=E @ —HL;B]C(B )H (4.28)

For example, for exponential class models

_ 1t exp(Byty)
IB) =me Hp 2~ fexp(By1,) - 1120

(4.29)

and a 100(1—a) per cent confidence interval for 3 is given by

ﬁl + Ki-an

* ,T]( N (4.30)

where K|_q/; 1s the appropriate normal deviate. Using the substitution principle [1], each
limit for ﬁl is substituted into Equation (4.24) to obtain a confidence interval for 3.
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V. DESCRIPTION OF COLLECTED DATA

The success of applying and using a software reliability model depends highly on the
quality and accuracy of failure data collection which in turn depends on careful planning
and organization. To do this, data takers should be motivated; the collection mechanism
should be as easy as possible; the data should be collected and scrubbed in real time
(missing data should be pursued); and feedback of results obtained should be provided on
a regular and timely basis [1]. Of course, these cannot be enforced to the current study

since data that were already collected are being used in this thesis.

In this part of the thesis an overview of the software system being modeled is
given. Throughout this thesis the pseudonym “System S” is used to refer to this system.
The software has been released and it is operational. From time to time modifications are

made to it.

5.1. Overview of System S

System S is a distributed system used for telecommunications management in many
countries. Control is distributed over numerous modules and is provided through
inexpensive microprocessors and memories. Naturally, this system has hardware and
software components. For example, it uses processors of the Intel iAPX 8086/8088
family, so the software consists of 8086 Assembly language statements. In this thesis

only the software aspect of the system is studied.

System S software is a large and complex system maintained by multiple groups
throughout the world. Like many other systems, it is modular. Two levels of
modularization can be considered. At the top level there are about 15 important main
function modules. Each one consists of several subfunction modules, which in turn are

made up of separately assembled and together linked and mapped source programs.
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When an unexpected function of the software is detected, a problem (or fault)
report is prepared. In response to a problem report, one or more patches are written. Each
patch is directly associated with a single problem report. A patch is a piece of code
overwriting original code in order to correct—remove a fault from—or enhance—add
new features to—System S software. A patch file contains a header describing the
problem being corrected. Its body consists of 8086 Assembly language statements. A

problem report just consists of a header describing the problem.
Some items in a fault report header are:

(A) Name of fault report.
(B) Date of fault report (year, month, day).
(C) Priority or level of severity of problem. There are four levels of priority:
(1) System cannot be operational as long as this error exists.
(2) System can be operational, but the operation can be heavily affected.
(3) System can be operational with minor restrict.
(4) Operation is not affected.
(D) Area of software where the problem was first found (operating system, call handling,
database management, etc.).
(E) Phase of life cycle during which the problem was found (coding inspection, local
integration, system test, module test, customer acceptance, etc.).
(F) Class of error (documentation, code, data, test, etc.).

(G) Build or installation the problem is found.
Some items in a patch header are:

(A) Name of patch.

(B) Test status (tested, untested, or excluded).

(C) Date of patch.

(D) Phase of life cycle during which the patch was provided.
(E) Class of error.

(F) Build or installation where the problem was found at first place.
(G) Application (i.e., whether the patch is official or not).
(H) Module name this patch applies to.

(I) Control element type this patch is entered.

(J) Identification of patches replaced by this patch.

(K) Problem reports or patches associated to this patch.

In this study relevant parts of this information are used.
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5.2. System S Failure Data

First of all, it should be stressed that no control on the data collecting procedures was
possible by the owner of this thesis. The data that were already recorded had to be used.
Also, it was highly probable that duplicate fault reports were present. This can be easily
understood from the fact that there were about 16,500 fault reports, while there were
about 6750 patches, but each patch must be associated with a single fault report. This can
be explained as follows: The same failure may be detected at different sites, so more than
one distinct fault reports may be prepared describing the same fault. However this is not

considered as a problem during operational phase. (See Section 4.1.2 in Musa et al. [1].)

The oldest patch that was found was recorded in the end of March 1983, while the
oldest fault report was recorded in the middle of March 1985. This shows that a
substantial amount of fault reports have been deleted. Also it has been said that patch

header information is more reliable and up to date than fault report header information.

The original number of patch header information retrieved was about 10,500.
From these about 500 were data updates. A data update is a piece of code overwriting
original data (for example, constants of the system) in the software. It can be used for
adapting the software to changing needs, or even correct some faults. Unfortunately,

these had no headers, so they had to be ignored.

From the remaining about 10,000 patches it was found that there were duplicate
patches with exactly the same header information. This can be explained as follows:
During the edit-assemble-test cycle, usually more than one time the editor is used for the
same patch. The editor does not delete the old version of a file when it makes a change on
it. In this way there may be different versions of the same patch in the database. After

deleting these, about 6750 patches were obtained.

For fault reports, only about 15 duplicate entries were found. This shows that
after a fault report is prepared it is not modified. This is natural, since a fault report does

not have a body. The final number of fault reports obtained was about 16,500.
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VI. RELIABILITY MODEL

Models are to be used, but not to be believed.
Henri Theil

In this part of the thesis error data obtained for “System S” is modeled by trying various
models and then chosing the best one for further study. Confidence intervals are provided
for parameters obtained by maximum likelihood estimation on mean value function.
Using these values, other quantities, like failure intensity function, total faults initially
present in the system, etc., are easily derived. Modeling is done on module basis, but at
the end of this part, error data is modeled for the whole system and the results are

compared with those obtained previously.

6.1. Defining a Failure

Software reliability modeling rests on the failures experienced. On the other hand, the
reason of a failure is a fault in the program. In response to a failure a modification is
made on the program, hopefully, correcting the fault so that the same failure does not

reoccur.

In other words, there are three different processes which take place at different
times and which have not one-to-one relationship. The data obtained from the software
system being studied is for the last two—fault reports and patches respectively. Since the
quality of data in fault reports is not as good as that for the patches, patch header
information has to be used to approximate faults. This also eliminates counting all
repetitions of the same failure, since one (or more) patches are written to correct all the
failures of the same type. As a patch describes the fault detection and removal process, in

this part the general term “error” is used in place of “failure” to avoid confusion.
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6.2. Grouping Errors

Instead of modeling the error behavior as a whole, it is a good idea to classify errors and

conduct software reliability modeling on groups of errors.

One option is classifying errors by their severity. Generally each error is not of
the same importance. Classifying errors according to their impact on the operations of the
organization is a generally followed practice. Error severity should not be confused with
the difficulty to identify and correct the error. The most important classification criteria
are: (a) cost impact; (b) human life impact; and (c) service impact [1]. For a telephone
switching system, service impact is the most appropriate criterion. In System S, for

example, there are four level of “priorities” characterizing the severity of the problem.

Another option is to divide the system into a set of components depending on the
physical nature of the system, each of whose reliabilities is easy to measure. Since the
error sample will be divided among components, there should not be a large number of
them. In System S an appropriate division is to divide it into the main software or
hardware modules. Other divisions, such as area of software where the problem was

found, may be used.

In this study patches are grouped according to the hardware modules they are
entered. The number of groups that are obtained is 94. In summary,
54 groups have less than 10 patches,
21 groups have between 10 and 34 patches,
four groups have between 35 and 100 patches, and

15 groups have more than 100 patches.

Since most of the groups have very few patches, these groups are ignored. Only the
groups with more than 100 patches are being considered and these are also the most

important ones.

Grouping patches according to the severity of the error being corrected is not
done in this study because this information is not kept in the patch headers and has to be
retrieved from fault report headers. However very few patches refer to (existent) fault

reports to do this.
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6.3. Trying Various Models

Five specific models can be considered:

(A) Exponential class (Sections 3.2.7 and 3.2.12):

u(t) = By [1 — exp(=B11)], (6.1)
A®) = By Biexp(=Bi). (6.2)

(B) Geometric family (Section 3.2.15):

H(0) = By In(1 + Byo), 63)
A(D) = % (6.4)

(C) Gamma class (a generalization of delayed S-shaped curve model described in

Section 3.2.13) using the Erlangian distribution:

0o N
t
H = By % - Z(B,-l! ) exp(—ﬁlt)% (6.5)
y -1
M0 =By rexn(=pio. (6.6)

(D) Inflection S-shaped curve (Section 3.2.13):

_ By [1 —exp(=p11)]

HO =14 By exp(—Bro) (®7)
_Bo Bi(1 + B) exp(=B1)
AD =70+ By exp(-Bil (6.8)
(E) Weibull class using the following generic function (Section 3.2.12):
_ P - -3,/
H(f) - :BIBZ [1 exp( .Blt )]a (6-9)
At) = By P21 exp(=B, 2. (6.10)

The last two models have three parameters. Their estimation is more difficult and so is

their interpretation, in other words, the physical meaning of the parameters is less
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obvious. Also an advantage of the last model over the others was not observed. The third
model has also three parameters, but y can be viewed as a parameter that gives different
models when set to various integer values. For example, when )~=1, the exponential and
when =2, the delayed S-shaped curve [20] models are obtained. (As an improvement,
may be considered as a real number, but in this case computations become much more
complex.) In this study first yis set to two, so the delayed S-shaped curve model (C2) is
tried out together with the other two-parameter models—namely exponential (A) and
geometric (B)—on the data obtained for the 15 groups described in the previous section.

The results obtained are shown on Table 6.1.

TABLE 6.1 Maximum likelihood estimation of parameters of three models
(modular basis)
~ ~

MODULE 1 t, m, MODEL Bo By SSE
C&T 1578 2893 110 A 454617 2.1066x10™ 1.443x10°
(Clock and B 441614  2.1510x107 1.517x10°
tone) 2 136.079  2.3202x107> 1.202x10°
SRVC 1214 2893 135 A 250791 -7.7242x10™% 3.625x10%
(Service) B _164.055  -3.3403x10™ 3.614x10%
2 482380  6.2089x107 2.386x10%
TTE 1412 2889 168 A -5085.864  -2.2003x107 8.752x10°
(Trunk) B -5800.946  -1.9327x107 8.717x10°
2 226623 1.7913x107 4.490x10°
LNE 904 2883 174 A 166678 -3.6123x107 3.165x10%
(Line) B 1326407 -2.0879x107 3.187x10%
2 329255 8.9487x107 1.559x10%
BLNG 1626 2879 178 A 1305.550  -3.6635x107 6.815x10°
(Billing) B 433284 -2.6887x107 6.939x10°
2 287.386  1.6728x107 3.895%10°
STD 1707 2879 226 A 515118 4.9280x107 9.257x10%
(Auxiliary for B 545678 43780107 9.741x10%
trunk) 2 263.160 29442107 3.680x10°
SADM 1037 2876 243 A 239420 -1.0708x10™ 2323x10°
(Adminis- B 2191107 -3.9130x10" 2331x10°
tration) 2 11807.691  1.1856x10™ 1.772x10°
PBX 1855 2914 260 A 379.540  1.0909x10 8.397x10%
B 288444 13815107 9.992x10%
2 281291 4.0008x107 3.163x10°
SPRX 1637 2897 322 A 702.830  4.8632x107 4.799x10°
(Auxiliary for B 793.648  3.9713x107 4.928x10°
prefix) 2 372739 27760107 2.632x10°
continued on next page
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~ ~
MODULE 1 t, m, MODEL Bo By SSE
TTEST 1338 2893 341 A -1150.065  -1.6699x107* 6.981x10°
(Trunk test) B 2145403 -9.4506x10™ 6.959x10°
2 500.804  1.5124x107 4297x10°
RMLNS 1874 2907 402 A 1400595 -6.7270x10™ 1.067%10°
(Remote B -603.394  -4.7082x107* 1.043x10°
lines) 2 749.945  1.7388x10 1.726x10°
ETTE 1850 2917 414 A 566.741  1.2288x10 9.094x10%
(Trunk) B 365.656  1.9705x10 1366x10°
2 442.056  4.1738%107 1.077x10°
DFC 1017 2900 661 A 424662 -4.9849x107 3.276x10°
(Defence) B 11092.530  -2.4107x107 3.306x10°
2 1507.329  7.9082x107 1.794x10°
ELNE 1562 2910 873 A 2314975  3.5118x107 8.111x10°
(Line) B 2817.509  2.6945x107 8.254x10°
2 1035.850  2.4565x107 3.671x10°
PFLD 1043 2891 1440 A 906317 -5.1473x107 2.384x10/
(Peripheral B 2248907  -2.5588x107 2.447x107
and load) 2 3323955 7.9727x10™% 1.086x107

The first column gives the module name. The second and third columns give the

start and end time, i.e., [f, t,] is the time interval between which the error data was

collected. The time is given as days elapsed since December 31, 1980. Table 6.2 may be

used to determine the actual date from the times used in this study.

TABLE 6.2 Conversion between first day of a month and number of days elapsed

since December 31, 1980

MONTHS: 1 2 3 4 5 6 7 8 9 10 11 12
1981 1 32 60 91 121 152 182 213 244 274 305 335
1982 366 397 425 456 486 517 547 578 609 639 670 700
1983 731 762 790 821 851 882 912 943 974 1004 1035 1065
1984 1096 1127 1156 1187 1217 1248 1278 1309 1340 1370 1401 1431
1985 1462 1493 1521 1552 1582 1613 1643 1674 1705 1735 1766 1796
1986 1827 1858 1886 1917 1947 1978 2008 2039 2070 2100 2131 2161
1987 2192 2223 2251 2282 2312 2343 2373 2404 2435 2465 2496 2526
1988 2557 2588 2617 2648 2678 2709 2739 2770 2801 2831 2862 2892
1989 2923 2954 2982 3013 3043 3074 3104 3135 3166 3196 3227 3257
1990 3288 3319 3347 3378 3408 3439 3469 3500 3531 3561 3592 3622
1991 3653 3684 3712 3743 3773 3804 3834 3865 3896 3926 3957 3987




RELIABILITY MODEL 40

The fourth column of Table 6.1 shows the number of errors experienced. The fifth
column shows the model used. The estimated parameters of the corresponding model are

shown in the sixth and seventh columns, together with the error sum of squares

(SSE=) ¢ . [m,~u()]?) in the last column.

Using SSE as a comparison criterion between models, it can be observed that for
13 out of the 15 modules, Model C2 (delayed S-shaped curve model) gives better results.
Model A (exponential class) is better for module ETTE, while Model B (geometric
family) is the better for module RMLNS. This means that the best between these models
for these data is the delayed S-shaped curve model. The exponential model is the second

best model in this case.

Since the exponential and delayed S-shaped curve models are special cases of the
gamma class model and since these two models are best for 14 out of 15 cases, the
gamma class model can be used to model the error behavior of these modules. Also for
the module where the geometric model seems better (RMLNS) the exponential model

does not give very different results: The error sum of squares are comparable.

Before going further, some observations on these models will prove useful. The
values of the parameters for the first two models are sometimes negative. The reason for
this is that the exponential and geometric models can accommodate increasing and
decreasing failure intensities, but not both at different times. This depends on the sign of
the parameter values. Since failure intensity must be always positive, from
Equations (6.2) and (6.4), it is deduced that both parameters must have the same sign.
When they are positive, the failure intensity decreases; when they are negative it
increases; and when £3;=0 (in this case 3 — ) there is a constant failure intensity. This is

shown in Figures 6.1 and 6.2.
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FIGURE 6.2 Behavior of geometric family models

Only in one case the exponential model becomes a finite errors model. This is
when its parameters are positive. In this case as -0, A-0 and - f3, so [ is an
estimate of the total number of errors that will occur at infinite time. But to have this, the

failure intensity must decrease. This can be tested using the statistic [1]

U=—F—. 6.11)
m,

Large negative values of U indicate decreasing trend in failure intensity. When U is
positive, the parameters for the exponential and geometric models become negative,

which indicates an increase in failure intensity and reliability decay. Thus it seems that
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for nine of the modules there is an overall increase in failure intensity according to these

two models.

The geometric model, besides of being an infinite failures model, has another
disadvantage when the failure intensity increases: At time t=—1/f3; the failure intensity
tends to infinity. For example, for module RMLNS at time =1874+2124=3998 (end of

year 1991) the failure intensity is undefined.

In summary, the exponential and geometric models are sometimes pessimistic. In
gamma class models such problems are not present, since they are more realistic. For
example, for the delayed S-shaped curve model the failure intensity increases until time
1/B; and then starts to decrease. Generally, for gamma class models failure intensity
attains to its maximum at /=()~1)/[3;. This is shown in Figure 6.3. Since for all software
modules of this study, except SADM, this time is smaller than z,, it can be deduced that
for those modules the failure intensity started to decrease according to the delayed S-

shaped curve model.

ko

=

mean failures U
failure intensity A

time (1) / B time

FIGURE 6.3 Behavior of gamma class models

6.4. Using the Gamma Class Model

After having chosen the gamma class model, there remains the determination of which y
value gives the best results. This can be done by trying various integer values for y and

chosing the one which gives minimum error sum of squares. Besides this, it should give a
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curve that fits well to the actual data. This can be determined by testing the goodness of
fit of the estimation using the Kolmogorov-Smirnov test [27, 28]. This is preferred to
other methods such as chi-square or correlation coefficient [25]. The Kolmogorov-
Smirnov test determines the significance of the model. For example, a level of
significance a=0.10 means that the probability of accepting the hypothesis—the model
can be used to explain the actual data—when it is in fact correct is p=0.90. In other
words, the probability of rejecting a true hypothesis is a. The larger the level of

significance is, the better the fit is.

The results are shown on Table 6.3. The fifth column of this table gives the
optimum ¥ value. The last two columns give the maximum Kolmogorov-Smirnov
distance (D) and the one that must not be exceeded (D) if the model is to be

accepted at o level of significance. If D,,,>Dy o1 the model cannot be accepted.

TABLE 6.3 Maximum likelihood estimation of parameters of gamma class modelsl

(modular basis)

%[(I)ED- ls e me Y é\O é\l SSE Dmax Dg

C&T 1578 2893 110 2 136079 23202x107 1202x10°  0.06061 <0.10202 = Dg 20
SRVC 1214 2893 135 12 139.045 1.1536x107 1.461x10°  0.06301 <0.09209 = Dg 20
TTE 1412 2889 168 2 226623 1.7913x107 4.490x10° 0.05375 <0.08255 = Dg 20
LNE 9004 2883 174 5 192.585 4.0704x107 7.697x10° 0.07525 <0.08112 = Dg 20
BLNG 1626 2879 178 2 287386 1.6728x107 3.895x10°  0.03743 <0.08020 = Dg 20
STD 1707 2879 226 3 240.861 5.1246x107 2.118x10%  0.09872 <0.10843 = Do 01
SADM 1037 2876 243 12 261.000 9.5057<107> 6.535x10% 0.13802 >0.10456 = Do 01
PBX 1855 2914 260 2 281291 4.0008x107 3.163x10% 0.08265 <0.08434 = D05
SPRX 1637 2897 322 4 332.020 6.7434x107  1359x10°  0.12444 > 0.09084 = Do 01
TTEST 1338 2893 341 9 345300 1.0945x10> 3224x10% 0.06483 <0.06607 = Dy 10
RMLNS 1874 2907 402 1 -400.595 -6.7270x10°* 1.067x10° ? >0.08130 =Dg (1
ETTE 1850 2017 414 1 566741 12288x107 9.094x10%  0.05558 <0.05603 = Do 15
DFC 1017 2900 661 § 693.662 7.0430x107 7.082x10% 0.04165 <0.04434 = Do 15

3

ELNE 1562 2910 873 5 891.380 7.8148x10" 7.510><105 0.06729 >0.05517 =Dy o1

3

PFLD 1043 2891 1440 6 1578.723 5.1481x10° 3.696><105 0.02535 <0.02820 = D) 2
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The results on this table show that,
for six modules the model can be accepted at a level of significance a=0.20,
for two other modules the model can be accepted at a level of significance a=0.15,
for another module the model can be accepted at a level of significance a=0.10,
for another module the model can be accepted at a level of significance a=0.05,
for another module the model can be accepted at a level of significance a=0.01, and
for the remaining four modules the model cannot be accepted at even a level of

significance a=0.01 according to Kolmogorov-Smirnov test.
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FIGURE 6.4 Gamma class models applied on real data

Figure 6.4 gives graphs for a few modules showing the true errors experienced
and the estimated mean value function according to the results of Table 6.3. For example,
the worst case according to Kolmogorov-Smirnov test is for module SPRX. The best fit is
obtained for module BLNG; the graph confirms this result. On the other hand module
ELNE cannot be explained by this model (according to Kolmogorov-Smirnov test), while

module PFLD can be explained with a high level of significance. In the graphs for
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modules BLNG and ELNE the fit seems equally good, but this is not confirmed by the
Kolmogorov-Smirnov test. Also, the fit for module PFLD seems better than the one for
BLNG, while the Kolmogorov-Smirnov test shows the contrary. This is, of course, a
direct result of a property of this test: As the number of errors, i.e., the number of data
points increases the test becomes more strict. Another test for the significance or

goodness of fit of a model may lead to a different evaluation.

6.5. Estimating Intervals

The main problem with interval estimation described at the end of Section 4.2 is that in
some cases the determined upper and lower bounds are practically meaningless since
they depend on the estimated mean value function, but not on the goodness-of-fit index
[25]. For example, as shown in the previous section, for some modules the model fits
well while for others it does not. However this information is not used in the interval

estimation.

In this section interval estimation is done using the method described in
Section 4.2, i.e., by using the expected, or Fisher, information. For this purpose, 95 per
cent confidence intervals for 3; are established, then these are substituted separately in

By = e (6.12)

e
- Z(—lf‘”l exp(-Ait)

i=0

to obtain confidence intervals for [3,. The results are shown on Table 6.4. The numbers in

parentheses show the lower and upper bounds for the corresponding point estimates.
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TABLE 6.4 Interval estimation of parameters of gamma class models
(modular basis)

oYy By By
C&T 2 136079 (123279 164.045)  2.3202x107  (1.7537x1070  2.8868x10™)
SRVC 12 139.045  (137.378  141.754)  1.1536x107>  (1.0908x107>  1.2164x107%)
TTE 2 226623 (201358 276.808)  1.7913x107  (1.3868x107  2.1957x10™)
LNE 5 192585  (185.682  203.455)  4.0704x107  (3.7051x107  4.4358x10™)
BLNG 2 287386 (238405  397.185)  1.6728x107°  (1.2114x107  2.1343x107)
STD 3240861 (235459 249313)  5.1246x107°  (4.6238x107  5.6255x10™)
SADM 12 261.000 (255500  268.704)  9.5057x107>  (9.0845x107>  9.9269x10™)
PBX 2 281291  (273.628  293.430)  4.0008x107  (3.5175x107  4.4840x10™)
SPRX 4 332020 (328804  336.685)  6.7434x107  (63154x107  7.1714x107)
TTEST 9 345300 (343.957  347.207)  1.0945x1072  (1.0532x1072  1.1359x102)
RMINS 1 -400.595 (-952.238  -220.577)  -6.7270x10™%  (-1.0045x107  -3.4093x10™%)
ETTE | 566741 (511303 669.554) 12288107  (9.0270x10™%  1.5550x107)
DFC 8 693.662 (686787  702.246)  7.0430x107  (6.8183x107  7.2677x107)
ELNE 5 891380  (887.504  896.238)  7.8148x107  (7.5562x107  8.0734x10™)
PFLD 6 1578723 (1558481 1602.299)  5.1481x107>  (5.0058x107>  5.2904x10™)

6.6. Deriving Other Quantities

For gamma class models, as t—, A-0 and U 3, so [y is an estimate of the total

number of errors in the software module. Thus the sixth column of Table 6.3 designates

the total number of errors that will be experienced at infinite time. One exception is that

module RMLNS has infinite errors, in other words, the data set does not show reliability

growth. This may be due to the fact that #; is the highest among the others modules, so

enough data were not collected to adequately fit a model. (Note that the exponential

model does not fit according to Kolmogorov-Smirnov test.)

The expected number of errors remaining at time ¢ is given by
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(6.13)

By substituting the estimated parameters into Equation (6.6), an estimate of the

failure intensity as a function of time can be obtained. (Note that before using time in

such equations ¢, must be subtracted from it.) Estimated failure intensity started to

decrease, according to gamma class models, for all modules of this study except for the
problematic module RMLNS.

Table 6.5 gives the expected number of remaining errors and the failure intensity

as a function of future time. As shown the failure intensity and number of remaining

errors is expected to drop except for module RMLNS.

TABLE 6.5 Expected number of remaining errors and failure intensity
(modular basis)

MODULE @)

start of 1989 1990 1991 1992 | 1989 1990 1991 1992
C&T 25 13 6 3| 435%102  237%10% 1.23x10% 6.22x107
SRVC 3 0 0 0| 193102 240x10°  2.12x10%  1.46x107
TTE 56 34 21 12| 7.34x102  474x102%  2.94x10%  1.78x107
LNE 17 7 3 1] 402x102%  177x102% 707103 2.64x1073
BLNG 104 67 42 26| 119x107"  829x102%  549x102  3.50x1072
STD 13 3 1 0| 471x102%  123x102%  286x10°  6.22x10™
SADM 15 3 0 0] 626x102%  136x102%  222x10°  2.90x10™
PBX 21 6 2 0| 670x102%  209x102%  6.08x10>  1.70x107>
SPRX 9 1 0 0| 417102 7.53x10°  117x10°  1.64x10™
TTEST 4 0 0 0| 225x102  217x10  1.58x10%  9.36x107°
RMLNS ? ? ? 9| s46x10! 6.98x101  8.92x107! 1.14
ETTE 152 97 6 39| 186x10’t  119x10!  7.60x102  4.85x107
DFC 30 7 1 0| ti3x10! 204x10?  638x10°  1.21x1073
ELNE 17 2 0 0| 893x102  133x102%  1.66x10>  1.82x10™
PFLD 27 42 13 4| 3.60x1070  134x107t 433x10%7  127x1072

From Equation (2.6)
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0t
R(f) = exp EL [ z(x)dx (6.14)
00

is obtained. Since program hazard rate is the same as the failure intensity function for

Poisson-type models, the following is obtained [1]
R(#ilti-1) = exp{-[u(ti-1+)-p(t-D]}, =1, 2, ... (6.15)

for the probability of failure-free operation during time interval ¢; between the ith and
(i-1)th failure. Since failure intensity is decreasing, except for module RMLNS, it can be

concluded that reliability is increasing for all the other modules.

6.7. Modeling the Whole System

Without doing the decomposition on error data done in Section 6.2 the whole system can
be modeled. In this section two different models will be used for this purpose: The
gamma class model which has proven to be satisfactory on module basis and the
inflection S-shaped curve model whose parameters are difficult and time consuming to
compute. (Also the third parameter, [3,, must be given to the estimating procedure as
input [25].)

The results of the gamma model are given on Table 6.6. The estimated time at
which failure intensity is maximum is also shown. Estimated values for parameters are
given together with their 95 per cent confidence intervals. Also the expected number of
remaining errors and failure intensity is given as a function of future time. Figure 6.5
gives the actual and estimated cumulative number of errors as a function of time and
Figure 6.6 gives the estimated failure intensity as a function of time. As it is seen,
quantities like failure intensity, reliability, and total number of errors in the system can
easily be derived. For example, the reliability started to increase and the expected number
of errors at infinite time is 7084 according to this model. The number of errors

experienced so far, 6738, make up 95 per cent of the total expected errors.
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TABLE 6.6 Maximum likelihood estimation on System S error data using

gamma class model

t = 820
t, = 2917
m, = 6738
y = 13
Bo = 7084.163 ( 7060.767 7109.127 )
B, = 9.2966x107 ( 9.2246x107 9.3686x107 )
o= 21
start of | 1989 1990 1991 1992
w(?) 338 67 11 1
() 1.39 3.18x107! 5.58x1072 8.03x1073
5 System S
t2
t' O
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3
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FIGURE 6.5 Gamma class model applied on System S error data
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FIGURE 6.6 Estimated failure intensity of System S using gamma class model

A similar study was conducted using inflection S-shaped curve model. Various
values for the third parameter, 3,, were tried and the optimum one was chosen. The
results are given on Table 6.7. The fit for this model is slightly worse than the fit for
gamma class model and the derived quantities, like total number of errors, time of
maximum failure intensity, expected number of remaining errors, estimated failure
intensity, are slightly different. For example, according to this model 96 per cent of the
total expected errors have been experienced. On the other hand this quantity is 91 per
cent on module basis and 95 per cent on system basis using gamma class models. This
means that roughly 90-95 per cent of the total errors have been corrected by the end of
year 1988.
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TABLE 6.7 Maximum likelihood estimation on System S error data using

inflection S-shaped curve model

t = 820
t, = 2917

m, = 6738

Bo = 7037912 ( 7018.060 7059.170 )
B, = 4.3657x1073 ( 43330x107 4.3983x107 )
B = 420

= 2204

start of | 1989 1990 1991 1992

W) 292 61 13 3

() 1.22 2.66x107! 5.48x1072 1.12x1072
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VII. CONCLUSIONS

This study has shown the relative advantage of the S-shaped reliability growth models
especially in the absence of additional information about the software system being
modeled. In particular, the three-parameter gamma class model is the most appropriate, at
least for the system under study. The disadvantage of the two-parameter models—Iike
exponential or geometric—is that they lack flexibility. They cannot accommodate
reliability decay and growth at different times during debugging, something which is
generally encountered in real life and can be modeled by a gamma class model. Although
the gamma class model assumes eventual reliability growth, in one case—that is, when
the third parameter becomes one, so that the exponential model is obtained—it can
provide reliability decay. But in this case no useful results can be derived as happened for

one software module of this study.

The theory behind the advantage of a gamma class model—e.g., delayed S-
shaped growth model—over the exponential growth models is discussed in some detail
by Ohba [25]. The most important difference is in the definition of errors; the exponential
software reliability growth models are designed for modeling a failure detection process
while the gamma class models are more appropriate for a test process analyzed as a fault
isolation process. Also, during a fault isolation process, some faults may be removed
without failure detection by a test team. All these conditions are also valid for System S
data, which explains why the gamma class models fit better than other models to these
data.

Some general problems in software reliability modeling are briefly discussed
below [1].

Firstly execution time should be used during modeling and then this should be
converted to calendar time. However this requires knowledge of the planned and resource
usage parameters as explained in Subsection 3.2.7. Since these data were not available
for this study, and it is believed that in operational phase this is not as important as in
testing—i.e., calendar time is proportional to CPU time—this was not done. If it had been

done, possibly, the exponential model could fit better.
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Another problem is the definition of a failure. This is discussed in Section 6.1.
Besides this, should requests of new features be considered as failures? This also brings

about the problem of evolving programs which is discussed below.

There is also the problem of time uncertainties or assigning multiple failures to
the same time point. This results in unpredictable, or even infinite, failure intensities at
some time points which causes problems in estimations (like least squares estimation
discussed in Section 4.1) which depend on failure intensity. One solution is to assign
random times within a day—as can be done for System S data—to each failure occurred
at that day. In maximum likelihood estimation, which depends on the number of failures
experienced, this does not cause a problem and such random assignment of failure times
within a day produces less than one per cent improvement in the goodness of fit of the

estimation.

When a software is used and tested in multiple installations with different
processors, failure times should be interleaved by adjusting all execution times and
failure intensities to a “reference computer.” In the system under study these are similar

processors with same instruction execution rates.

Reliability models assume stable program, except changes resulting from
failure correction. But in most systems, and in System S too, there are requirement
changes that result in new features being added to the system. Solutions to this problem

are:
(A) Think changes as additions or removals of independent subsystems, so do modeling
on each “subsystem” and then combine the results.

(B) Adjust failure times to what they would have been if the complete final program had

been present and then think the data as coming from a stable program.
(C) Ignore changes and allow model to adapt its parameters.

The disadvantage of the first two options is the need of additional data about the

software, while for the third option estimation errors are larger.

Changes in environment or operational profile is another problem that should be

accounted for.

All these problems contribute into uncertainties in the estimated parameters of a
model which should be reflected on the results obtained, that is the lower and upper

bounds of the model parameters. “Nonclassical” or Bayesian approaches, like the
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Littlewood-Verrall (Section 3.2.8) may prove useful for this purpose, but estimation is

much more complex.
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APPENDIX A. OPTIMIZATION ALGORITHM

To estimate the unknown parameters of a specific software reliability model it is
generally necessary to optimize a function. This may be for least squares estimation the
minimization of the sum of squares function, and for maximum likelihood estimation
(MLE) the maximization of the log-likelihood function. There is no essential difference
between the maximization and minimization problems, because the values of x; which

maximize f{x) also minimize -f{x).

Since there is presently not a single recommended method for solving every
general optimization problem, nor is there ever likely to be, it is important to take
advantage of the special features that a given problem may posses. For software
reliability modeling, it is suggested [1] that either the Newton-Raphson root finding

procedure, or the Nelder and Mead searching procedure, or both be used.

The Newton-Raphson method is a numerical root finding procedure using
gradient information. It has the advantage of converging very rapidly if the initial
estimate for a variable is close enough to the final solution. The main disadvantage is that
it may not always converge, especially when the initial estimate is not good enough. This
problem becomes more severe as the number of unknown parameters to be estimated

increases.

The Nelder and Mead method is a simple to program direct search method which
is based neither on gradients (first-order derivatives) nor on quadratic forms (second-
order derivatives). No assumptions are made about the surface defined by the function
except that it is continuous and has a unique minimum in the area of the search. This
method is one of the most efficient pattern search methods and has been found to work
well when the number of variables does not exceed five or six. It is robust and always
converges to a local minimum. The main disadvantage is that it is slow, especially in the
neighborhood of a minimum, when compared with methods which depend on arguments

applicable to quadratic forms.

These two methods are discussed in more detail in the following sections.
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A.1. Newton-Raphson Root Finding Procedure

As a numerical root finding procedure for systems of nonlinear simultaneous equations
the Newton-Raphson procedure can be used. This is a widely used technique for solving
equations where a direct algebraic solution is not possible. If a root for the equation
f(x)=0 is sought, the formula

Xyt =Xy _f%%’ n=0,1, ... (A.1)

can be used to improve the first approximation x to root to whatever degree of accuracy

that is required.

More generally, we want to solve multiple equations for roots S (k=0, 1,..., w),
i.e., we have the equation U(B)=0, where U(p) is a (w+1)x1 column vector with elements
Ui(B=1(P), k=0, 1, ..., w. Then we have the formula

B =B-H"'(B xUP (A2)

where 8 is closer to root than the previous approximation 8. The matrix H(f), also called

the Hessian matrix, is a (w+1)X(w+1) square matrix with elements

HB) =407, k10,1, (A3)

The above “matrix” version of the original Newton-Raphson formula is applied
repeatedly by replacing f8 with the newly found vector B, until successive estimates

agree to a specified tolerance on an element by element basis.

If w=0, then B is a single-element vector and we obtain the original formula with

9By
x, replaced by Sy, x,11 by By’, fxy) by fo(Bo)s and " (x,) by foo(Bo)= j;(ﬁg :

If w=1, then we have

~oi1H, ThO

o o _Dfoome oo f10f00 0
@1@@1 Hho 110 UID_@ﬁ Efoo;’mD
Do /11U
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f01
1f11

A

where f1;,(B) is shown as f;; for simplicity.

(A.4)

In most cases w does not exceed 1 and in some cases it is 0, so we need not bother

ourselves with more complex situations.

In reliability estimation we have a function to be maximized. For example, in
maximum likelihood estimation we have the likelihood function L(B). To maximize it, its

derivatives are set to zero, i.e.,

%:0, k=0, 1, ..., w. (A.5)
So the elements of vector U(P) are
UB = 1B = 22 é}fﬁ) 0, k=0,1,...,w, (A.6)
and of matrix H(f) are
Hy(B) = fi(P) = a;g;_/(:a(g), k,1=0, 1, ..., w. (A.7)

The Newton-Raphson procedure converges rapidly if it does, which generally
happens if the initial estimate is close enough to ﬁ If the initial estimate is poor it may
diverge. Also, the evaluation of the Hessian matrix, and its inversion, may pose

formidable computational problems.

A.2. Nelder and Mead Simplex Method

The Nelder and Mead method [29] is largely based on the method developed by
Spendley, Hext, and Himsworth (1962). (See Chapter 3 in Walsh [30].) It can be used to

minimize a function of n variables. The function may be considered as a mapping from a
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point p; in the n-dimensional space E” to a single value in [J. An initial estimate point py
is chosen together with n additional points p; (i=1,...,n) preferably in »n different
directions away from p. These (n+1) points are the vertices of a simplex which is not
necessarily regular. For example, in E’a simplex is a triangle and a regular simplex is an
equilateral triangle; in Ea (regular) simplex is a (regular) tetrahedron, and so on. At
each stage of the application of the method the point p;, (with the highest function value)
is replaced by a new (and more optimal) point. In this way the simplex moves towards

the minimum of the function.

The advantage of the Nelder and Mead method to the one described earlier by
Spendley et al. is that here “the simplex adapts itself to the local landscape, elongating
down long inclined planes, changing direction on encountering a valley at an angle, and
contracting in the neighborhood of a minimum.” To accomplish this, three operations are
used: reflection, contraction, and expansion. The factor by which the volume of the
simplex is changed by these operations is given by the coefficients a, (B, and y

respectively. The complete method in algorithm form is given below.

Definitions:
Solution to be found: p* a column vector denoting a point in
Euclidean n-space E", [x{, Xy, ..., X,,]-
Function to be minimized:  f(p) a function from E" to [J.
Initial estimate of p*: Po
Vertices of simplex: Po> P, ---» P, such that p; = pg + he; (i=1, ..., n) where e;
are the unit coordinate vectors and the
scalars h; are chosen so as to equalize
UApoth; e;) - flpog)L as far as possible.
Also define
yi =/p;)
n
y, =max (y;) =f(pj,) highest function value,

=0
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n
y, = Max (y,) = f{p,) second highest function value,
i=0
iZh
n
y; =min (y;) = fp)) lowest function value,
i=0
1 n+l
pe=" > p; centroid of all vertices except py,.
i=1
iZh
Algorithm:

Calculate initial p;, y; (i=0, ..., n);

while not converged do
determine /, A, s, and pc;
pp = (1+a) pe — a py; /* reflection */
»y =fpp);
if (v <yy<yy) /* case 1 */
Pn = PP;
yn =/pp);
start next iteration;
if oy <yp /* case 2: expansion */
ppp = (1Y) pe + ypp;
yyy =fppp);
if Gy <»)
Pn = PPP;
else
Pn = PP;
yr=1pn);
start next iteration;
if vy > yy) /* case 3: contraction */
if (ny <yp)
ppp = (1-) pe + B pp;
else
ppp = (1-B) pe + Bpy;
vy =fppp);

59
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if (yyy <yp and yyy <yy)
P,= PPP;
= APp);
start next iteration;

else
for (i=0, ..., n and i#])

pi=(;tp)/2;
yi=Apy;
start next iteration;
endwhile;
P =p;

Convergence is tested with v {Z(y,--y)z/n} <gor {Zyiz-(Zyi)z/(n-i-l)}/n <€ The
constants are defined as follows (suggested values are given inside parentheses):
a>0 (a=1), 0<f<1 (B=1/2), y>1 (y=2), and 0<e<<1 (8210'8).

A.3. Recommended Procedure

Musa et al. [1], after pointing out the problems with the above two methods suggest a
method which combines these two. The strategy is to use the simplex procedure until the
solution is close enough to the roots for the Newton-Raphson procedure. In other words,
the simplex procedure is not allowed to converge completely. The obtained estimate is
used by the Newton-Raphson procedure to get the final answer. If it converges after a
specific number of iterations we are done. Otherwise, the simplex procedure is used again
to improve the estimate more. This is given again to the Newton-Raphson procedure and

the process is repeated until convergence is obtained or program time limit is exceeded.

If the initial estimate is good the performance of this method will be also good.
From practical experience it is suggested that the value 1/¢, be used as the initial estimate
for the parameter 3; in the maximum likelihood estimation for both the exponential class
and geometric family of Poisson models. This is a good initial estimate for other models

too.
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A.4. Problems

There are at least two problems that should be considered when using this maximization
procedure. First, we should make sure that we have found a maximum (for maximum
likelihood estimation) and not a minimum, and second, that this is a global maximum and

not a local one.

The first concern is not so difficult to avoid since we can always test the second
derivative at the solution point. Also the Nelder and Mead procedure is always directed

to a maximum (of the negative) of the function.

The second problem occurs when we have a small sample to estimate multiple
parameters. Once the sample size exceeds 25 this problem becomes rare. But it is always
a good idea to use the procedure with different starting values and use the best solution if

there are more than one.

A.S. Program

By using the methods outlined in this appendix, a program was developed which may be
used to estimate parameters for a specific model using data obtained from a software
project. Maximum likelihood estimation on mean value function is used in this program
since this is preferred over the least squares estimation. It should be pointed out that a
similar program using least squares estimation on failure intensity was tried, but the

results were not satisfactory.

Four models are implemented in this program: Exponential class, geometric
family, gamma class, and (inflection) S-shaped curve reliability growth models. The last
two models can be considered as generalizations of the exponential model with an
additional parameter; when this parameter is set to one, for the gamma model, and to
zero, for the inflection S-shaped curve model, the exponential model is obtained. All
these models are Poisson type. Also a Binomial type exponential model is provided. New

models can easily be added to this program.
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The function specific to each model is coded in the program together with its
derivatives. The program finds the roots for this function. The Nelder and Mead
procedure, which is actually a function minimization method, tries to minimize the
square of the function, while the Newton-Raphson procedure finds the roots of the

function using as initial estimate the value obtained by the Nelder and Mead procedure.

/***  MLE - Maximum likelihood estimation of the parameters of
* some software reliability models using Nelder and Mead
(N-M) method and Newton-Raphson (N-R) procedure.

Written by Fedon Kadifeli. 1989.

Input - This program reads from a file observed times of
failures. If known, the start and end test times can
also be given as negative numbers in the beginning of
the file. Otherwise the smallest and largest time
values will be used for test start and end times,
respectively.

Output - Estimated values of the parameters of the chosen
model together with 95 per cent confidence intervals
are displayed after some statistics about the failure
data.

Options - The models supported by this program are:
Exponential class (Poisson and binomial),
geometric family (Poisson),
gamma class (Poisson), and
inflection S-shaped reliability growth model.

For three-parameter models the third parameter is
supplied by the user.

b S S S T S . S S R A . S S S S S S S S N

/
char usage [] = "\
\n MLE - Estimate parameters for a model using MLE on mean\
\n value function.\
\n\
\n Command call:\
\n\
\n MLE dataf\
\n\
\n dataf: file containing failure time data (need not be\
\n sorted) .";
#define N 1 /* number of parameters for N-M */
#define ALPHA 1.0 /* constant for N-M */
#define BETA 0.5 Jxomonox/
#define GAMMA 2.0 Jxomonox/
#define EPSILON 1le-10 /* convergence limit for N-R */
#define MAXSST 200 /* max no of N-M steps before stop */
#define MAXRST 15 /* step limit for N-R */
#define SST 20 /* step limit for N-M */

#define K 95 1.96 /* normal variate for 95% conf. int. */
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typedef double vector [N];

char *fn; /* failure data file name */
int model; /* class/family of model */
float t[100007; /* observed times read from data file */
double b2; /* third parameter of infl. S-sh. model */
int gamma ; /* third parameter of gamma model */
double me, te, sti, mete, metete, sxl, sx2, mete g, fact g;
double (*f) (), (*fp) (); /* MLE function and its derivative */
double (*b0 bl) (), (*x b0) (), (*x bl) (),

(*bl x) ()7 /* conversion functions */
#include "file.h" /* file open and close routines */

#include <float.h>
#include <math.h>

double error () /* for unimplemented functions */
{
fprintf (stderr, "This option is not implemented.");
exit (2);

} /* error */

double null (double x) { return x; } /* do nothing function */
double powi (x,1) /* x**xi *x/
double x;

register 1i;
{
double p = 1.0;
if (i<0) {
i = -1y
x = 1.0/x;
}
while (i-- > 0)
p = x;
return p;
} /% powi */

/*¥**x*x*x M o d e 1 functions ***x*xx/

/***** Binomial type models **x**xx*/

/*** Expb --- Exponential class (Binomial-type) model ***/

/* x == b0 (== ul) */

double b0 bl expb(double b0) { return me/(stitbO*te-mete); }
#define x bl expb b0 bl expb

double bl x expb(double bl) { return me/bl/te + me - sti/te; }

sX_expb (x)

double x;

{
register i, 1lv = (int) (me+0.5);
double d;
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for (1 = 0; i < lv; i++) {

b} /* for */
} /% sx_expb */

double f expb (x) /* MLE function */
double x;
{
sx_expb (x);
return - mete/ (sti+te*x-mete) + sxl;
} /* f expb */

double fp expb (x) /* derivative of MLE function */
double x;
{
double d = sti + te*x - mete;
sx_expb (x);
return metete/d/d - sx2;
}  /* fp expb */

/***** Poisson type models **x**xx*/
/*** Expp —--- Exponential class (Poisson-type) model ***/

/* x == bl */
double x b0 expp(double x) { return me/(l.0-exp(-x*te)); }

double f expp (x) /* MLE function */
double x;
{

return me/x - mete/ (exp(x*te)-1.0) - sti;

b /* f_expp */

double fp expp (x) /* derivative of MLE function */
double x;
{
double d = exp(x*te);
return - me/x/x + metete*d/(d-1.0)/(d-1.0);
} /* fp_expp */

/*** Geo --- Geometric family model ***/
/* x == bl */
double x b0 geo (double x) { return me/log(1l.0+x*te); }

SX _geo (x)
double x;

register i, 1lv = (int) (me+0.5);

double d;

sx1l = sx2 = 0.0;

for (1 = 0; i < 1lv; i++) {
d=1.0/ (1.0 + x*t[i]);
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sx1l += d;
sx2 += t[i]*d*d;
}/* for */
} /* sx_geo */

double f geo (x) /* MLE function */
double x;
{
double d = 1.0 + x*te;
SX_geo (X);
return sx1/x - mete/d/log(d);
} /* f geo */

double fp geo (x) /* derivative of MLE function */

double x;

{
double d = 1.0 + x*te;

double 1d = log(d);

SX_geo (X);

return - (sx1l/x + sx2)/x + metete*(1.0+1d)/d/d/1d/1d;

}  /* fp geo */

/*** Gamma --- Gamma class model ***/
/* x == bl */
sSX_ gamma (X)
double x;
{
register i=1;
double dl=1.0, d2=x*te;

sx2 = 0.0;
while (i<gamma) {
sx2 += dl;
dl *= d2/i++;
}
sx1l = sx2+dl;
}  /* sx_gamma */

double x b0 gamma (double x) { sx gamma (X);
return me/ (l.0-exp(-x*te)*sxl); }

double f gamma (x) /* MLE function */
double x;

{
SX_gamma (x) ;
return gamma*me/x - sti

- mete g*powi (x,gamma-1)/fact g/ (exp (x*te)-sx1);

}  /* £ gamma */

double fp gamma (x) /* derivative of MLE function */

double x;

{
double dl = exp(x*te);
double d2 = dl - sx1;
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SX_ gamma (x) ;
return - gamma*me/x/x + mete g*powi (x,gamma-2)
* (x*te* (dl-sx2) - (gamma-1) *d2) /fact g/d2/d2;
}  /* fp gamma */

/*** Gexp —--—- General exponential (inflection S-shaped curve)
class model ***/
/* x == bl */
double x b0 gexp(double x) { double d = exp(-x*te);
return me* (1.0+b2*d)/(1.0-d); }

SX_ gexp (Xx)

double x;

{
register i, 1lv = (int) (me+0.5);
double dl1, d2;

sxl = sx2 = 0.0;

for (i = 0; 1 < 1v; 1i++) {
dl = b2*exp (-x*t[i]);
d2 1.0/(1.0 + d1);
sx1 += t[i]*(1.0-d1)*d2;
sx2 += t[i]*t[i]*d1l*d2*d2;

} /* for */

} /% sx_gexp */

double f gexp (x) /* MLE function */
double x;
{
double d = exp(x*te);
SX_gexp (x);
return me/x - mete* (1.0+b2)/(d-1.0+4b2*(1.0-1.0/d)) - sx1;
} /* £ gexp */

double fp gexp (x) /* derivative of MLE function */
double x;
{

double dl = exp(x*te);

double d2 dl - 1.0 + b2*(1.0-1.0/d1);

SX_gexp (x) ;

return - me/x/x + metete* (1.0+b2)* (b2/d1l+dl)/d2/d2 - 2*sx2;

} /* fp_gexp */

/****x*x E n d o f model functiomns **x*x*xx/

double f2 (vp) /* function to be minimized by N-M */
vector vp;

{
double d = f£(vp[0]);

return d*d; /* use the square of the MLE function */

yoo/x f2 %/

getinp () /* failure time data from file */
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FILE *df;
double ti, ts, trs, tre;
int sf=1, ef=1;

register ime;

df = fop (fn, "r", NULL);

fprintf (stderr, "\n\nEnter time range (start, end)\n");
/* may be used to skip data outside a "time window" */
scanf ("%$1f%1f", &trs, &tre);

fprintf (stderr, "\nLoading data. Please wait...\r");

fscanf (df, "%1f", &ti);

if (ti<=0.0) { /* try to see if start and...*/
te = -ti; /* end test time is given */
ef = 0;

fscanf (df, "S$1f", &ti);
if (ti<=0.0) {

ts = tey

sf = 0;

te = -ti;

fscanf (df, "%1f", &ti);
} else ts = tre;

} else { /* otherwise use the first...*/
ts = tre; /* and last failure time */
te = trs;

} /* else */

sti = 0.0;

ime = 0; /* failure count */

do {

if (trs<=ti && ti<=tre) {
if (sf && ts>ti) ts = ti;
if (ef && te<ti) te = ti;
t [ime] = ti;
sti += ti;
if (++ime >= sizeof (t)/sizeof (*t))

break;
} o /* if */
} while (fscanf(df, "%1f", &ti)==1);
me = ime;

fprintf (stderr, "\r\t\t\tlt\t\tc\t\t\t\r");

if (!feof (df)) {
fprintf (stderr, "The whole file was not read!\a");
exit (3);

}

fcl (df, NULL);

fprintf (stderr, "\rt = (%g, %g) -> (0, ", ts, te);
te -= ts;
sti -= me*ts;

mete = me*te;
metete = mete*te;

while (--ime>=0) /* adjust times */
t [ime] -= ts;
fprintf

stderr, "%g)\n", te);
fprintf (stderr, "me =

(

( .15g\n", me);
fprintf (stderr, "sti =

(

(

.15g\n", sti);
.15g\n", mete);
.15g\n", metete);

fprintf (stderr, "me*te =
fprintf (stderr, "me*te*te =

o° o° o oo ~
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fprintf (stderr, "U = %.3f\n",
(sti-me/2.0*te) /te/sqrt (me/12.0) );
/* getinp */

initialize (p, V) /* initial estimation */
vector p[N+1];
double yI[N+1];

{

register i, 7J;

double x;
getinp ();
if (model==3) { /* if infl. S-shaped model */

fprintf (stderr,
"\nEnter third parameter of model\n\t\t\tb2 = ");
scanf ("$1f", &b2);

} else if (model==2) { /* 1if gamma model */
fprintf (stderr,
"\nEnter third parameter of model\n\t\t\tgamma = ");
scanf ("%i", &gamma) ;

if (gamma<l) {
fprintf (stderr, "Gamma must be a positive integer!\a");
exit (4);

}

mete g = me*powi (te,gamma) ;

fact g =1 = 1;

while (i<gamma)
fact g *= i++;

}

/* p[0] : initial estimation from bl = - sign (U) / te */
i = (me*te*0.5<sti) ? -1 : +1;
if (model==3 || (model==2 && gamma>1))
i = 4+1;
x = p[0][0] = bl_x((double)(i)/te);
fprintf (stderr, "Initial estimation is\tx = %g\n\

This means\t\tb0 = %g\n\t\t\tbl = %g\n\
\nYou can enter another initial estimation if you want.\n\

\t\t\tx =", x, x b0(x), x bl(x));
scanf ("$1f", &p[0]1[0]); /* note: no error check */
y[0] = £2(p[0]);
for (i=1; 1<N+1; 1i++) { /* initialize p[i] and y[i] */
for (3=0; J<N; J++)
if (1!=9+1)
plil[j] = p[01I[J1;
else
plil[J] = (p[0][j]==0.0) 2 1.0 : p[O0][J]1*1.1;
yli] = £2(plil);
} /% for */
} /* initialize */
assign (d, s) /* vector assignment */

vector d, s;

{

}

register j;

for (3=0; J<N; Jj++)
dljl = slJjl;

/* assign */
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eval (p, 9, r, W) /* weighted vector addition */
vector p, g, r;
double w;

{
register j;
for (3=0; J<N; Jj++)
plj]l = (1.0-w)*q[j] + w*r[J];
} /* eval */

results (p, vy, 1) /* intermediate results from N-M */
vector pI[N+1];
double yI[N+1];
{
register i, 7J;
for (i=0; i<N+1; i++) {
fprintf (stderr, "%c f2 (%.15g", (i==1)2'*':' ', p[i][0]);
for (j=1; Jj<N; J++)

fprintf (stderr, ", %.15g", plil[3]);
fprintf (stderr, ") = %.15g\n", yI[i]);
} /* for */
}  /* results */
lohish (1, h, s, V) /* low, high, and second high in y */

int *1, *h, *s;
double y[N+1];
{
register i, min, max, max2;
/* determine min, max, and max2 of first two elements */
min = max2 = ! (max = y[0]<y[1l]);
for (i=2; i<N+1; i++)
if (y[i] < ylmin])
min = 1i;
else if (yl[i] > ylmax])
{ max2 = max; max =
else if (y[i] > y[Imax2]
max2 = 1i;
*1 = min;
*h = max;
*s = max2;
} /* lohish */

i; 3
)

main (argc, argv) /* Maximum Likelihood Estimation */
char **argv;

{

vector p[N+1], /* vertices of simplex */
PP,
PP,
pc; /* centroid */
double y[N+1], /* £2(p[i]) */
VY /* £2(pp) */
YYY, /* £2 (ppp) */
dif, x;
int btype, /* model type; 0O:Poisson, 1:Binomial */
j—r jr k,

1 /* low */, h /* high */, s /* second high */,
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ssc = 0, /* step count for N-M */
rsc; /* step count for N-R */
/* —--- Constant Tables --- */

static char *et[]

= A

"0 : exponential mu(t) = b0*(l-exp(-bl*t))\

\n\t\t lambda (t)
"l : geometric
\n\t\t lambda (t)

= b0*bl*exp (-b1l*t)",

mu(t) = b0*1n(l+bl*t))\

= b0*bl/ (1+bl*t)",

"2 : gamma (S-sh) \

mu(t) = b0*(1-S(i=0,gamma-1, (bl1*t)**i/i!)*exp (-bl*t))\
b0*bl**gamma*t** (gamma-1) *exp (-bl*t)/ (gamma-1)!",
mu(t) = b0*(l-exp(-bl*t))/ (1l+b2*exp (-bl*t))\

= b0*bl* (1+b2) *exp (-bl*t) / (1+b2*exp (-bl*t)) **2",

\n\t\t lambda (t)

"3 : infl. S-sh.

\n\t\t lambda (t)
}i
#define MNO

static double (*ft[2][MNO]) () = { /* MLE functions */
{ f expp, f geo, f gamma, f gexp },
{ f:epr, e;ror, _error, grror }
}i
static double (*fpt[2][MNO]) () = { /* derivatives */
{ fp_expp, fp_geo, fp_gamma, fp_gexp 1},
{ fp_expb, error, error, error }
}i
static double (*b0 blt[2] [MNO]) () = {
{ error, - error, error, error },
{ b0_bl expb, error, error, error }
}i
static double (*x b0Ot[2] [MNO]) () = {
{ x b0 expp, x b0 geo, x b0 gamma, x b0 gexp 1},
{ B _null, B e;ror, B _error, B grror }
}i
static double (*x blt[2][MNO]) () = {
{ null,  null, null, null 1},
{ x bl expb, error, error, error }
}i
static double (*bl xt[2] [MNO]) () = {
{ null, ~ null, null, null 1},
{ bl x expb, error, error, error }
}i
if (argc!=2) {
fprintf (stderr, usage);
exit (1);
}
fprintf (stderr, "\n--- DATA FILE NAME: %s\n", fn=argv[l]);
do {

(sizeof (et) /sizeof (*et))

fprintf (stderr, "\nChoose a model\n\n");

for (model=0;

model<MNO; model++)

fprintf (stderr, "%s\n", et[modell]);
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fprintf (stderr,

"\nwhere t is (t-ts)\n\n\tYour choice (0-%d): ", MNO-1);
scanf ("%d", &model);
} while (model < 0 || model >= MNO);
do {
if ((btype=getchar())=="\n")
fprintf (stderr, "\nType of model (Binomial/Poisson): ");
btype = toupper (btype):;
} while (btype != 'B' && btype != 'P');
btype = btype == 'B'; /* 0: Poisson, 1:Binomial */
f = ft [btype] [model]; /* MLE function */
fp = fpt [btype] [model]; /* its derivative */
b0 bl = b0 blt [btype] [model];/* conversion function */
x b0 = x b0t [btype] [model]; Jxomon %/
x bl = x blt [btype] [model]; VA
bl x = bl xt [btype] [model]; Jxomonox/

initialize (p, Vy):
lohish (&1, &h, &s, y);
results (p, vy, 1);

/* main loop */
do {
/* Nelder and Method method */
fprintf (stderr, "Simplex\n");
while (++ssc%SST != 0) {
lohish (&1, &h, &s, y); /* determine 1, h, and s */

for (Jj=0; J<N; J++) { /* calculate centroid...*/
pclj]l = 0; /* of pts with i!=h */
for (i=0; i<N+1; i++)
if (i!=h)
pclj] += plil[]];
pclil /= N; /* / (N+1-1) */

} /* for */

fprintf (stderr, "R"); /* reflection */
eval (pp, pc, plh]l, -ALPHA);
yy = f2(pp);

if (y[ll<=yy && yy<=ylsl) { /* case 1 */
assign (p[h], pp);

yl[h]l = £2(pp);

continue; /* end of case 1 */
yo/* 1f */
if (yy<yl[1ll]) { /* case 2 : expansion */

fprintf (stderr, "E");

eval (ppp, pc, pp, GAMMA);

yyy = £2(ppp);

assign (p[h], (yyy<y[l]) ? ppp : pp);

ylh] = £2(p[h]);
continue; /* end of case 2 */
yo/* 1f */
fprintf (stderr, "C"); /* case 3 : contraction */

eval (ppp, pc, (yy<yl(h]) ? pp : plh], BETA);
yyy = f£2(ppp);
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if (yyy>=ylhl |1 yyy>=yy) {
for (i=0; i<N+1; i++)
if (i!=1) {
eval (pl[il, plil, pl[l]l, 0.5); /* take mean */
yli] = f2(pl[i])
}oo/x if */
} else {
assign (p[hl, ppp);
ylh] = £2(ppp);
} /* else */
continue; /* end of case 3 */
}  /* while */

’

lohish (&1, &h, &s, vy):;
fprintf (stderr, "\n");
results (p, v, 1);
/* Newton-Raphson procedure */
x = p[1l][0];
fprintf (stderr, "Newton-Raphson\n");
for (rsc=0; rsc<MAXRST; rsc++) {
dif = f£(x)/fp(x);

x = x - dif;

fprintf (stderr, "%25.20g %25.20g\n", x, dif);
} /* for */
if (dif<0)

dif = -dif;

} while (dif>EPSILON && ssc<MAXSST) ;
if (ssc >= MAXSST) {
fprintf (stderr,
"Convergence not obtained. (Error: %$g)\a", dif);
exit (5);
}o o /x if */

{ /* printing final results */
#define bl b0 (bl) x b0 (bl x(bl))
double b0 = x b0(x), bl = x bl(x); /* estim. parameters */
double dbl = K 95/sqrt (-fp(x));

fprintf (stderr, "bO = %.3f\n", bO);
fprintf (stderr, "bl = %.4e\n", bl):
if (btype) /* if Binomial type */
fprintf (stderr, "bl r = $%.4e\n", b0 bl ((int) (b0+0.5)));
if (model==3) /* 1if infl. S-sh. model */
fprintf (stderr, "Db2 = %g\n", b2);
else if (model==2) /* if gamma model */
fprintf (stderr, "gamma = %d\n", gamma) ;

printf ("%.3f\t(%.3f\t%.3f)\t", bO,
bl b0 (bl+dbl), bl b0 (bl-dbl));
printf ("%.4e\t(%.4e\t%.4e)\n", bl,
bl-dbl, bl+dbl)
}  /* results */
} /* main */
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/** file.h - File open and close functions.

*/

#include <stdio.h>

/* fop:
*

*

*

*/

Open file 'fn' with mode 'fm' using as buffer 'buf'.
If BUFSIZE is not defined or buf==NULL, the file

will not be buffered. If fm[0]=='w', an error will be
given if the file already exists.

FILE *fop (fn, fm, buf)
char *fn, *fm, *buf;

{

FILE *fp;

if (fm[0]=='w' && access (fn,0)==0) {
fprintf (stderr, "File %s already exists.\n", fn);
exit (255);

}

if ((fp=fopen (fn, fm))==NULL)
fprintf (stderr, "Cannot open file %s with mode %s.\n",

fn, fm);

#ifdef BUFSIZE
else 1f (buf==NULL)
return fp;
else if (setvbuf (fp, buf, IOFBF, BUFSIZE))
fprintf (stderr, "Cannot buffer file %s.\n", fn);

#endif
else

return fp;

exit (

255) ;

} /* fop */

/* fcl:

*
*
*/
void fcl
FILE *fp
char *bu
{
#ifdef B
if (bu
fpri
exit
}
fendif
if (fc

Close file stream 'fp' which is using buffer 'buf'.
If BUFSIZE is not defined or buf==NULL no attempt
will be made to unbuffer the file.

(fp, buf)

£;

UFSIZE

f!=NULL && setvbuf (fp,NULL, IONBF,0)) {

ntf (stderr, "Cannot unbuffer file.\n");
(254);

lose (fp)) {

fprintf (stderr, "Cannot close file.\n");

exit
}
y /* fc

(254) ;

1%/
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APPENDIX B. INDEX

Basic execution time model, 18 Interval estimation, 25, 29, 30

Calendar time, 8

Category of a model, 14
Class of a model, 14
Clock time, 8

Confidence interval, 12
Data update, 34

Delayed S-shaped model, 21
Environment, 9

Error, 7, 35

Error sum of squares, 40
Execution time, 8
Expected life, 5
Exponential distribution, 6
Failure, 7

Failure count models, 13
Failure intensity function, 8
Failure probability, 5
Failure rate, 6

Family of a model, 14
Fault, 7

Fault introduction, 9

Fault removal, 9

Fault report, 33

Fault seeding models, 13
Hardware reliability, 5
Hazard rate, 6

Hessian matrix, 56

Kolmogorov-Smirnov test, 43

Least squares estimation, 26, 55

Logarithmic Poisson execution time
model, 23

Maximum likelihood estimation, 29, 55

Mean time between failures (MTBF), 6

Mean time to failure (MTTF), 5

Mean time to repair (MTTR), 6

Mean value function, 8

Nelder and Mead method, 57

Newton-Raphson method, 56

Nonhomogeneous random process, 8

Operational profile, 9

Optimization, 55

Parameter estimation, 12, 25

Parameter prediction, 12, 25

Patch, 33

Point estimation, 25

Problem report, 33

Random process, 8

Regular simplex, 58

Reliability, 5

Reliability function, 5

S-shaped reliability growth models, 21

Significance of a model, 43

Simplex, 58

Software availability, 10

Homogeneous random process, 8 Software maintainability, 10
Inflection S-shaped model, 22 Software quality, 3

Input domain based models, 13 Software reliability, 7
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